Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/80905| Tipo: | Dissertação |
| Título : | Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil |
| Autor : | Silva, Vitória Biana da |
| Tutor: | Campos, Kilmer Coelho |
| Palabras clave en portugués brasileño: | análise discriminante;;agronegócio;;insolvência;;análise de risco. |
| Palabras clave en inglés: | discriminant analysis;;agribusiness;;insolvency;;risk analysis. |
| Áreas de Conocimiento - CNPq: | CNPQ::CIENCIAS SOCIAIS APLICADAS |
| Fecha de publicación : | 2025 |
| Citación : | SILVA, Vitória Biana da. Previsão e análise de risco de insolvência de empresas do índice agronegócio B3 no Brasil. 2025.82 f. Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Economia Rural, Fortaleza, 2025. |
| Resumen en portugués brasileño: | O agronegócio é um dos setores mais estratégicos e dinâmicos da economia brasileira, representando parcela significativa do Produto Interno Bruto (PIB) e das exportações do País. Dada a sua importância, a análise da situação financeira das empresas desse segmento torna-se de relevo, não apenas, para a gestão empresarial, mas, também, para a antecipação de cenários críticos, como a prevenção de falências e a mitigação de suas repercussões sociais e financeiras. Nessas circunstâncias, este estudo tem como objetivo geral prever e analisar o risco de insolvência das empresas do Índice Agronegócio B3 no Brasil. Com este intento, foi utilizada uma amostra composta por 30 empresas de capital aberto do setor de agronegócio. Os dados financeiros foram extraídos do Balanço Patrimonial e da Demonstração do Resultado do Exercício, abrangendo o período de 2019 a 2022. Esses dados foram submetidos a três modelos de previsão de insolvência amplamente reconhecidos na literatura: Elizabetsky (1976), Kanitz (1978) e Matias (1978). Demais disso, foram empregadas análises descritivas para compreender o perfil financeiro das empresas, bem como se efetivou o cálculo do fator de insolvência em condições determinísticas e de risco. Para a análise de risco, foi utilizado o Método Monte Carlo, implementado por meio do software @RISK, que ensejou a simulação de realidades distintas avaliar a probabilidade de insolvência sob incerteza. A análise discriminante identificou os principais indicadores que diferenciam empresas solventes e insolventes, destacando-se a margem líquida, o nível de endividamento geral, a razão entre financiamentos e empréstimos bancários em relação ao ativo circulante e, por fim, o capital próprio. A função discriminante do modelo de Elizabetsky demonstrou maior eficácia na classificação dos casos originais, exprimindo uma capacidade superior de distinção entre empresas solventes e insolventes em comparação aos modelos de Kanitz e Matias. A análise de risco de insolvência revelou que o período pandêmico (desde 2020) influenciou de modo heterogêneo no risco de insolvência das empresas do setor. Enquanto o modelo de Elizabetsky indicou alto risco de insolvência durante esse período, os modelos de Kanitz e Matias apontaram um risco relativamente baixo. Essa divergência sugere a importância de considerar múltiplas abordagens na avaliação de risco, bem como a necessidade de contextualizar os resultados na ambiência econômica e social específica. |
| Abstract: | Agribusiness is one of the most strategic and dynamic sectors of the Brazilian economy, accounting for a significant share of the country's Gross Domestic Product (GDP) and exports. Given its importance, analyzing the financial health of companies in this sector is crucial not only for corporate management but also for anticipating critical scenarios, such as bankruptcy prevention and mitigating itssocial and financial repercussions. In this context, this study aims to predict and analyze the risk of insolvency among companies listed on the B3 Agribusiness Index (IAGRO) in Brazil. A sample of 30 publicly traded agribusiness companies was used for this purpose. Financial data were collected from the Balance Sheet and Income Statement, covering the period from 2019 to 2022. These data were applied to three widely recognized insolvency prediction models in the literature: Elizabetsky (1976), Kanitz (1978), and Matias (1978). Descriptive analyses were employed to understand the financial profile of the companies, as well as the calculation of the insolvency factor under deterministic and risk conditions. For risk analysis, the Monte Carlo method was used, implemented through the @RISK software, which allowed for the simulation of different scenarios and the assessment of insolvency probability under uncertainty. Discriminant analysis identified the main indicators differentiating solvent and insolvent companies, highlighting net margin, overall indebtedness level, the ratio of financing and bank loans to current assets, and, finally, equity. The discriminant function of the Elizabetsky model demonstrated greater effectiveness in classifying original cases, showing superior ability to distinguish between solvent and insolvent companies compared to the Kanitz and Matias models. The insolvency risk analysis revealed that the pandemic period (starting in 2020) heterogeneously impacted the insolvency risk of companies in the sector. While the Elizabetsky model indicated a high risk of insolvency during this period, the Kanitz and Matias models pointed to a relatively low risk. This divergence underscores the importance of considering multiple approaches in risk assessment, as well as the need to contextualize results within the specific economic and social scenario. |
| URI : | http://repositorio.ufc.br/handle/riufc/80905 |
| Lattes del autor: | http://lattes.cnpq.br/8563646416545119 |
| ORCID del tutor: | https://orcid.org/0000-0001-7752-2542 |
| Lattes del tutor: | http://lattes.cnpq.br/6206120391191140 |
| Derechos de acceso: | Acesso Aberto |
| Aparece en las colecciones: | DEA - Dissertações defendidas na UFC |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 2025_dis_vbsilva.pdf | 977,07 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.