Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/78656
Tipo: | Tese |
Título : | Bayesian multilateration for localization and regression |
Título en inglés: | Bayesian Multilateration for localization and regression |
Autor : | Alencar, Alisson Sampaio de Carvalho |
Tutor: | Gomes, João Paulo Pordeus |
Co-asesor: | Mattos, César Lincoln Cavalcante |
Palabras clave en portugués brasileño: | Modelagem bayesiana;Localização;Multilateração;Navegação |
Palabras clave en inglés: | Bayesian modeling;Localization;Multilateration;Navigation |
Áreas de Conocimiento - CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Fecha de publicación : | 2023 |
Citación : | ALENCAR, Alisson Sampaio de Carvalho. Bayesian Multilateration for localization and regression. 2023. 68 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2023. |
Resumen en portugués brasileño: | Neste trabalho, apresentamos uma abordagem inovadora denominada Bayesian Multilateration (BMLAT), que aborda desafios em sistemas de localização e regressão. A técnica convencional de Multilateration (MLAT), comumente utilizada para localização de pontos de interesse (POIs), muitas vezes produz estimativas pouco confiáveis devido ao ruído dos sensores e fornece apenas estimativas pontuais do POI. O BMLAT emprega modelagem bayesiana para lidar com incertezas no MLAT, utilizando funções de verossimilhança e distribuições anteriores. Essa estrutura bayesiana é de fácil implementação e utiliza software Markov Chain Monte Carlo (MCMC) disponível para inferência. Além disso, o BMLAT pode acomodar sensores com informações de localização incompletas e múltiplas medições por ponto de referência. Experimentos abrangentes com dados sintéticos e do mundo real demonstram que o BMLAT oferece melhor estimativa de posição e quantificação de incerteza em comparação com métodos alternativos. Em outro domínio, a Minimal Learning Machine (MLM) tem recebido atenção por sua eficiência no tratamento de tarefas complexas de classificação e regressão. No entanto, a abordagem tradicional do MLAT, quando combinada com a MLM, não leva em conta as incertezas inerentes em conjuntos de dados do mundo real e produz apenas uma estimativa pontual. Para enfrentar esse desafio, princípios bayesianos são integrados à MLM para criar a Bayesian MLM (BMLM). A BMLM oferece uma perspectiva probabilística, fornecendo não apenas estimativas pontuais, mas também uma distribuição abrangente de saída, capturando incertezas no processo de estimação. O estudo visa elucidar as implicações teóricas e práticas do BMLM, demonstrando sua consistência com os processos gaussianos por meio de análises empíricas. A incorporação de princípios bayesianos aprimora a qualidade da estimativa de saída da MLM e oferece uma compreensão mais profunda das incertezas. Além disso, propomos a aplicação combinada da BMLAT e BMLM para tarefas de localização e regressão, explorando o potencial sinérgico dessas abordagens. |
Abstract: | In this work, we present an innovative approach called Bayesian Multilateration (BMLAT), which addresses challenges in localization and regression systems. The conventional Multilateration (MLAT) technique, commonly used for locating points of interest (POIs), often produces unreliable estimates due to sensor noise and provides only point estimates of the POI. BMLAT employs Bayesian modeling to handle uncertainties in MLAT by utilizing likelihood functions and prior distributions. This Bayesian framework is easy to implement and uses available Markov Chain Monte Carlo (MCMC) software for inference. Moreover, BMLAT can accommodate sensors with incomplete location information and multiple measurements per reference point. Extensive experiments with synthetic and real-world data demonstrate that BMLAT provides better position estimation and uncertainty quantification compared to alternative methods. In another domain, the Minimal Learning Machine (MLM) has gained attention for its efficiency in handling complex classification and regression tasks. However, the traditional MLAT approach, when combined with MLM, does not account for the inherent uncertainties in real-world datasets and only produces a point estimate. To address this challenge, Bayesian principles are integrated into MLM to create the Bayesian MLM (BMLM). BMLM offers a probabilistic perspective, providing not only point estimates but also a comprehensive output distribution, capturing uncertainties in the estimation process. The study aims to elucidate the theoretical and practical implications of BMLM, demonstrating its consistency with Gaussian processes through empirical analyses. The incorporation of Bayesian principles enhances the output estimate quality of MLM and provides a deeper understanding of uncertainties. Additionally, we propose the combined application of BMLAT and BMLM for localization and regression tasks, exploring the synergistic potential of these approaches. |
URI : | http://repositorio.ufc.br/handle/riufc/78656 |
Lattes del autor: | http://lattes.cnpq.br/5007699859608116 |
Lattes del tutor: | http://lattes.cnpq.br/9553770402705512 |
ORCID del co-asesor: | https://orcid.org/0000-0002-2404-3625 |
Lattes del co-asesor: | http://lattes.cnpq.br/2445571161029337 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DCOMP - Teses defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2023_tese_ascalencar.pdf | 1,94 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.