Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/78266
Tipo: Tese
Título : PEG: Local differential privacy for edge-attributed graphs
Título en inglés: PEG: Local differential privacy for edge-attributed graphs
Autor : Mendonça, André Luís da Costa
Tutor: Machado, Javam de Castro
Palabras clave en portugués brasileño: Privacidade diferencial local;Grafos com atributos nas arestas;Análise de grafos
Palabras clave en inglés: Local differential privacy;Edge-attributed graphs;Graph analytics
Áreas de Conocimiento - CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Fecha de publicación : 2024
Citación : MENDONÇA, André Luís da Costa. PEG: Local differential privacy for edge-attributed graphs. 2024. 103 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.
Resumen en portugués brasileño: Grafos com atributos nas arestas são uma classe particular de grafos projetados para representar redes nas quais o conteúdo das arestas indica um tipo de relacionamento entre dois nós. O estudo de grafos com atributos nas arestas encontra aplicações em diversos campos, como detecção de anomalias, análise de mobilidade e busca de comunidades. No entanto, como os grafos com atributos nas arestas geralmente contêm informações sensíveis, a preservação da privacidade ao liberar esse tipo de dado para análise de grafos torna-se uma questão importante. Nesse contexto, a privacidade diferencial local (PDL) emergiu como uma definição robusta para a liberação de dados sob garantias sólidas de privacidade. No entanto, as técnicas existentes de PDL para grafos na literatura se concentram principalmente em estruturas de grafos tradicionais, sem considerar os atributos associados às arestas em grafos com atributos. Neste trabalho, introduzimos o PEG, uma abordagem inovadora projetada para liberar grafos com atributos nas arestas com garantias de privacidade diferencial local. Combinando técnicas de particionamento e agrupamento, possibilitamos uma distribuição mais eficaz do ruído entre nós similares, preservando a estrutura e os relacionamentos inerentes dentro do grafo liberado. Experimentos extensivos em conjuntos de dados do mundo real mostram que o PEG pode liberar de forma eficaz grafos com atributos nas arestas que são úteis e privados, permitindo a subsequente computação de várias métricas de análise de grafos com alta utilidade, incluindo aplicações na detecção de comunidades.
Abstract: Edge-attributed graphs are a particular class of graphs designed to represent networks whose edge content indicates a relationship between two nodes. The study of edge-attributed graphs finds applications in diverse fields, such as anomaly detection, mobility analysis, and community search. Since edge-attributed graphs usually contain sensitive information, preserving privacy when releasing this data type for graph analytics becomes an important issue. In this context, local differential privacy (LDP) has emerged as a robust definition for data release under solid privacy guarantees. However, existing graph LDP techniques in the literature primarily focus on traditional graph structures without considering the nuanced attributes associated with edges in attributed graphs. This paper introduces PEG, a novel approach designed to release edge-attributed graphs with local differential privacy guarantees. Combining partitioning and clustering techniques enables more effective noise distribution among similar nodes, which preserves the inherent structure and relationships within the released graph. Extensive experiments on real-world datasets show that PEG can effectively release useful and private edge-attributed graphs, enabling subsequent computation of various graph analysis metrics with high utility, including applications in community detection.
URI : http://repositorio.ufc.br/handle/riufc/78266
Lattes del autor: http://lattes.cnpq.br/6186580431759759
Lattes del tutor: http://lattes.cnpq.br/9884980518986225
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DCOMP - Teses defendidas na UFC

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2024_tese_alcmendonca.pdf4,57 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.