Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/76271
Tipo: TCC
Título : Serviço web para diagnóstico de retinopatia diabética através de imagens utilizando redes neurais convolucionais
Autor : Linhares, Francisco Igor Felício
Tutor: Silva, Wendley Souza da
Palabras clave en portugués brasileño: Diabetes;Diabetes;Retinopatia Diabética;Retinopatia Diabética;Inteligência Artificial;Inteligência Artificial;Visão Computacional;Visão Computacional;Redes Neurais Convolucionais;Redes Neurais Convolucionais
Palabras clave en inglés: Diabetes;Diabetes;Diabetic retinopathy;Diabetic retinopathy;Artificial Intelligence;Artificial Intelligence;Computer Vision;Computer Vision;Convolutional Neural Networks;Convolutional Neural Networks
Áreas de Conocimiento - CNPq: CNPQ::ENGENHARIAS
Fecha de publicación : 2022
Resumen en portugués brasileño: O diabetes é uma das doenças que mais cresce nas últimas décadas. O número de adultos que vivem com esta doença mais que triplicou nos últimos 20 anos, e as estimativas indicam que este número só aumentará. O maior problema para pessoas com diabéticas são as consequências provocadas pelos altos níveis de glicose no sangue, variando de doenças cardiovasculares a amputação de membros. Uma consequência comum em pessoas com diabetes é o desenvolvimento de retinopatia diabética, uma condição que causa inchaço e vazamentos nos vasos sanguíneos da retina, que pode até levar à perda total da visão. A retinopatia diabética é a principal causa evitável de cegueira, e isso se deve principalmente ao diagnóstico tardio e falta de tratamento adequado para reverter a condição do paciente. Com base nesse cenário, o presente trabalho foi desenvolvido com a finalidade de utilizar a Inteligência Artificial para auxiliar no diagnóstico desta patologia, para isso foram testadas 4 arquiteturas diferentes de Redes Neurais Convolucionais para realizar o diagnóstico sendo elas a Lenet-5, Alexnet, Googlenet e Vgg-19, esta útlima atingindo aproximadamente 78% de acurácia com sensibilidade acima de 98%. Os modelos treinados podem ser utilizados para auxiliar o diagnóstico desta condição e assim fazendo com que pessoas diabéticas com retinopatia façam o tratamento precoce, evitando o desenvolvimento da doença até sua forma mais agressiva.
Abstract: Diabetes is one of the fastest growing diseases in recent decades. The number of adults living with this disease has more than tripled in the last 20 years, and estimates indicate that this number will only increase. The biggest problem for people with diabetes are the consequences brought about by high levels of glucose in the blood, ranging from cardiovascular diseases to amputation of limbs. A common consequence in people with diabetes is the development of diabetic retinopathy, a condition that causes swelling and leaks in the blood vessels of the retina, which can even lead to complete loss of vision. Diabetic retinopathy is the main preventable cause of blindness, and this is mainly due to late diagnosis and lack of adequate treatment to reverse the patient’s condition. Based on this scenario, the present work was developed with In order to use Artificial Intelligence to aid in the diagnosis of this pathology, 4 different architectures of Convolutional Neural Networks were tested to perform the diagnosis, namely Lenet-5, Alexnet, Googlenet and Vgg-19, the latter reaching approximately 78% accuracy with sensitivity above 98%. The trained models can be used to assist the diagnosis of this condition and thus making diabetic people with retinopathy undergo early treatment, preventing the development of the disease to its most aggressive form.
URI : http://repositorio.ufc.br/handle/riufc/76271
Lattes del autor: http://lattes.cnpq.br/6776781267068191
Lattes del tutor: http://lattes.cnpq.br/4443491511199960
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2022 _tcc_fiflinhares.pdf3,09 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.