Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/75734
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorCostantini, Federica-
dc.contributor.authorGori, Andrea-
dc.contributor.authorLopez-González, Pablo-
dc.contributor.authorBramanti, Lorenzo-
dc.contributor.authorRossi, Sergio-
dc.contributor.authorGili, Josep-Maria-
dc.contributor.authorAbbiati, Marco-
dc.date.accessioned2024-01-11T15:10:04Z-
dc.date.available2024-01-11T15:10:04Z-
dc.date.issued2016-
dc.identifier.citationCOSTANTINI, Federica; GORI, Andrea; LOPEZ-GONZÁLEZ, Pablo; BRAMANTI, Lorenzo; ROSSI, Sergio; GILI, Josep-Maria; ABBIATI, Marco. Limited genetic connectivity between Gorgonian morphotypes along a depth gradient. PLoS One, United States, v. 11, p. e0160678, 2016. Disponível em:https://doi.org/10.1371/journal.pone.0160678. Acesso em: 11 jan. 2024.pt_BR
dc.identifier.issn1555-5887-
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/75734-
dc.description.abstractGorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherPLoSpt_BR
dc.rightsAcesso Abertopt_BR
dc.titleLimited genetic connectivity between Gorgonian morphotypes along a depth gradientpt_BR
dc.typeArtigo de Periódicopt_BR
dc.subject.ptbrEspécie - Gorgonianpt_BR
dc.subject.ptbrCoastal areaspt_BR
dc.subject.ptbrVariabilidadept_BR
dc.subject.enSpecie - Gorgonianpt_BR
dc.subject.enÁrea costeirapt_BR
dc.subject.enVariabilitypt_BR
local.author.latteshttp://lattes.cnpq.br/0900817180710886pt_BR
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2016_art_fcostantini.pdf4,11 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.