Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/75061
Tipo: Dissertação
Título: Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar
Autor(es): Nunes, Hélder Antero Amaral
Orientador: Moreira, Leonardo Oliveira
Palavras-chave em português: Mineração de dados educacionais;Evasão;Retenção;Predição
Palavras-chave em inglês: Educational data mining;Evasion;Retention;Prediction
CNPq: CNPQ::CIENCIAS HUMANAS::EDUCACAO
Data do documento: 2023
Citação: NUNES, Hélder Antero Amaral. Mineração de dados socioeconômicos e educacionais de discentes para predição de evasão e retenção escolar. 2023. 93 f. Dissertação (Mestrado Profissional em Tecnologia Educacional) - Universidade Federal do Ceará, 2023.
Resumo: A evasão e retenção escolar sempre foram temas abordados na educação brasileira. Esses problemas afetam não apenas a vida dos alunos, de suas famílias e da sociedade em que vivem, mas também o orçamento das instituições de ensino. Isso é evidenciado pelo fato de que a alta taxa de evasão e retenção representa um desperdício de recursos públicos. Diante disso, as instituições de ensino devem desempenhar seu papel como educadoras e buscar abordagens inovadoras para aplicar seus recursos no combate à evasão e retenção. A Mineração de Dados Educacionais possibilita o conhecimento de fatores que podem melhorar a proposta educacional, bem como a previsão do desempenho dos alunos e dos fatores que influenciam o aprendizado. Para uma compreensão mais aprofundada do tópico e do estado atual da arte, foi conduzido uma Revisão Sistemática da Literatura. Essa revisão permitiu identificar os algoritmos de Inteligência Artificial mais amplamente empregados, bem como os dados associados a eles. Como resultado, essa RSL desempenhou um papel fundamental ao aprimorar a compreensão e ao definir os requisitos para o software proposto. Com base nessas características, o objetivo deste trabalho é desenvolver uma ferramenta que faça uso da mineração de dados educacionais e socioeconômicos. Através da aplicação de técnicas de classificação, a ferramenta visa auxiliar gestores educacionais no enfrentamento da evasão e retenção escolar, desde o momento da matrícula até o início das aulas. Essa ferramenta foi desenvolvida em Java, fazendo uso da biblioteca Weka. No processo de validação do experimento, foram utilizadas duas bases de dados distintas, resultando em uma impressionante taxa de acurácia de mais de 97% em ambas as bases. Para a validação da usabilidade do software, foi aplicado o questionário Sistema de Avaliação da Usabilidade, ao qual foram adicionadas duas perguntas adicionais com o intuito de compreender melhor as eventuais dificuldades na utilização do software pela comunidade escolar. A aplicação do questionário foi conduzida por profissionais da área de educação em escolas situadas na região do sertão pernambucano. Os resultados desse processo de validação oferecem uma visão valiosa sobre o desempenho e a usabilidade da ferramenta, contribuindo para sua avaliação e aprimoramento contínuo.
Abstract: Dropout and school retention have always been topics addressed in Brazilian education. These issues impact not only students’ lives, their families, and the society they live in but also the budget of educational institutions. This is evidenced by the fact that the high dropout and retention rates represent a waste of public resources. In light of this, educational institutions must fulfill their role as educators and seek innovative approaches to allocate their resources effectively in combating dropout and retention. Educational Data Mining enables the understanding of factors that can enhance the educational proposal, as well as the prediction of students’ performance and the factors influencing learning. For a deeper understanding of the topic and the current state of the art, a Systematic Literature Review was conducted. This review allowed for the identification of the most widely used Artificial Intelligence algorithms, along with the associated data. As a result, this SLR played a fundamental role in improving the understanding and defining the requirements for the proposed software. Based on these characteristics, the goal of this work is to develop a tool that utilizes educational and socioeconomic data mining. Through the application of classification techniques, the tool aims to assist educational managers in addressing dropout and retention from the moment of enrollment until the start of classes. This tool was developed in Java, using the Weka library. In the experiment validation process, two distinct databases were used, resulting in an impressive accuracy rate of over 97% in both databases. To assess the software’s usability, the System Usability Scale questionnaire was administered, with two additional questions added to better understand potential difficulties in using the software within the school community. The questionnaire was conducted by education professionals in schools located in the region of the Pernambuco hinterlands. The results of this validation process provide valuable insights into the tool’s performance and usability, contributing to its ongoing evaluation and improvement.
URI: http://repositorio.ufc.br/handle/riufc/75061
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:PPGTE - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2023_dis_haanunes.pdf1,51 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.