Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/74618
Type: | Dissertação |
Title: | Application of clustering methods for hydrological Regionalization using the camels-br database |
Title in English: | Application of clustering methods for hydrological Regionalization using the camels-br database |
Authors: | Oliveira, Thaís Antero de |
Advisor: | Souza Filho, Francisco de Assis de |
Keywords in Brazilian Portuguese : | Classificação hidrológica;Clusterização;CAMELS;Bacias hidrográficas |
Keywords in English : | hydrological classification; multi-method.;Clustering; CAMELS; |
Issue Date: | 2023 |
Citation: | OLIVEIRA, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023. |
Abstract in Brazilian Portuguese: | previsão de vazão em bacias não monitoradas parametrização de modelos e desenvolvimento e gestão de bacias. Para superar a limitação de quantidade reduzida de dados hidrológicos foi produzido e disponibilizado publicamente o conjunto de dados Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS-BR). A aplicação limitada de métodos de clusterização na análise de bacias hidrográficas no Brasil especialmente utilizando o conjunto de dados CAMELS-BR destaca uma lacuna na pesquisa científica. Este estudo apresenta uma metodologia robusta de clusterização de bacias hidrográficas que incorpora múltiplos métodos de clusterização e aborda suas divergências utilizando os dados do CAMELS-BR. A metodologia introduzida neste estudo envolve uma abordagem de clusterização multi-método que combina as técnicas K-means Partitioning Around Medoids (PAM) e Fuzzy C-means (FCM). A literatura não explorou o estabelecimento de um consenso entre osmétodos de clusterização para classificação ao contrário dametodologia proposta neste estudo que enfatiza a obtenção de uma classificação baseada no acordo coletivo entremúltiplos métodos em vez de depender exclusivamente de métricas de desempenho individuais. A clusterização hidrológica realizada neste estudo apresenta um baixo nível de concordância com as regiões hidrográficas definidas pela ANA. |
Abstract: | The catchments parameters regionalization is crucial for streamflow prediction in ungauged basins model parameterization and watershed development and management. To overcome the limitation of reduced amount of hydrological data the Catchment Attributes and MEteorology for Large-sample Studies – Brazil (CAMELS – BR) was produced and made publicly available. Limited application of clustering methods in catchment analysis in Brazil particularly using the CAMELS-BR dataset highlights a research gap in the literature. This study presents a robust catchment clustering methodology that incorporates multiple clustering methods and addresses their divergences applied to the CAMELS-BR dataset. The methodology introduced in this study involves a multi-method clustering approach that combines the K-means Partitioning Around Medoids (PAM) and Fuzzy C-means (FCM) techniques. The literature has not explored the establishment of a consensus among clustering methods for classification unlike the methodology proposed in this study which emphasizes deriving a classification based on collective agreement among multiple methods rather than relying solely on individual performance metrics. The hydrological clustering conducted in this study shows a low level of agreement with the hydrographic regions defined by ANA. |
Description in Brazilian Portuguese: | Oliveira, T.A. Application of clustering methods for hydrological Regionalization using the camels-br database. 2023. 78f. Dissertação ( Mestrado em Engenharia Civil - Recursos Hídricos ) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023. |
URI: | http://repositorio.ufc.br/handle/riufc/74618 |
Author's Lattes: | http://lattes.cnpq.br/2651598957028403 |
Advisor's Lattes: | https://buscatextual.cnpq.br/buscatextual/busca.do# |
Access Rights: | Acesso Aberto |
Appears in Collections: | DEHA - Dissertações defendidas na UFC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023_dis_taolveira.pdf | 3,04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.