Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/73452
Tipo: Artigo de Periódico
Título : Automatic segmentation of macular holes in optical coherence tomography images
Autor : Mendes, Odilon Linhares Carvalho
Lucena, Daniel da Rocha
Lucena, Abrahão Rocha
Cavalcante, Tarique da Silveira
Albuquerque, Victor Hugo Costa de
Altaf, Meteb
Hassan, Mohammad Mehedi
Alexandria, Auzuir Ripardo de
Palabras clave : Image processing;Macular hole (MH);Optical coherence tomography (OCT);Segmentation;Processamento de Imagem;Buraco Macular;Tomografia de coerência óptica;Segmentação
Fecha de publicación : 2021
Editorial : IEEE Access
Citación : MENDES, Odilon Linhares Carvalho; LUCENA, Daniel da Rocha; LUCENA, Abrahão Rocha; CAVALCANTE, Tarique da SIlveira; ALBUQUERQUE, Victor Hugo Costa de; ALTAF, Meteb; HASSAN, Mohammad Mehedi; ALEXANDRIA, Auzuir Ripardo. Automatic segmentation of macular holes in optical coherence tomography images. IEEE Access, [s.l.], v. 9, p. 96487-96500, 2021.
Abstract: The retina is a part of the ocular system responsible for vision. In the central region of the retina is the macula, that enables detailed view. There is a distinct macular disease called Macular Hole (MH). It causes a condition of low vision related to the weakening of the fovea, high myopia, eye trauma and severe exposure to the sun. A surgery depends of the size and shape of the MH. A macular hole can be identified in Optical Coherence Tomography (OCT) images through the top boundaries of the Internal Limiting Membrane (ILM) and the Retinal Pigment Epithelium (RPE). Manual segmentation of OCT images is time consuming whereas automatic segmentation is fast and has a low computational cost, and consequently of interest to specialists. Thus, the main objective of this work is to develop an algorithm that automatically segments the ILM boundary layer and the area of the MH in OCT images. Another objective that was also pursued included the automatic acquisition of MH measurements. The segmentation was performed through a set of techniques involving shortest distance from a point to a curve (Euclidean Distance), Flood Fill and Border Following algorithms. The proposed method reached satisfactory results for all applications made. The automatic segmentation of MH and the extraction of its measures is a significant contribution to aid the medical diagnosis of the macular hole pathology.
URI : http://www.repositorio.ufc.br/handle/riufc/73452
ISSN : 2169-3536
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DEEL - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2021_art_olcmendes.pdf1,72 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.