Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73448
Tipo: Artigo de Periódico
Título: Modified squeezeNet architecture for parkinson’s disease detection based on keypress data
Autor(es): Bernardo, Lucas Salvador
Damaševičius, Robertas
Ling, Sai Ho
Albuquerque, Victor Hugo Costa de
Tavares, João Manuel Ribeiro da Silva
Palavras-chave: Parkinson’s disease;Neurodegeneration;Early diagnosis;Key typing;Deep learning;Convolutional network;Mal de Parkinson;Neurodegeneração;Diagnóstico precoce;Digitação de teclas;Aprendizado profundo;Rede convolucional
Data do documento: 2022
Instituição/Editor/Publicador: Biomedicines
Citação: BERNARDO, Lucas Salvador; DAMAŠEVIČIUS, Robertas; LING, Sai Ho; ALBUQUERQUE, Victor Hugo Costa de; TAVARES, João Manuel Ribeiro da Silva. Modified squeezeNet architecture for parkinson’s disease detection based on keypress data. Biomedicines, [s.l.], v. 10, n. 11, p. 2746, 2022.
Abstract: Parkinson’s disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject’s key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches
URI: http://www.repositorio.ufc.br/handle/riufc/73448
ISSN: 2227-9059
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_art_lsbernanrdo.pdf706,84 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.