Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/73448
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBernardo, Lucas Salvador-
dc.contributor.authorDamaševičius, Robertas-
dc.contributor.authorLing, Sai Ho-
dc.contributor.authorAlbuquerque, Victor Hugo Costa de-
dc.contributor.authorTavares, João Manuel Ribeiro da Silva-
dc.date.accessioned2023-07-11T16:13:33Z-
dc.date.available2023-07-11T16:13:33Z-
dc.date.issued2022-
dc.identifier.citationBERNARDO, Lucas Salvador; DAMAŠEVIČIUS, Robertas; LING, Sai Ho; ALBUQUERQUE, Victor Hugo Costa de; TAVARES, João Manuel Ribeiro da Silva. Modified squeezeNet architecture for parkinson’s disease detection based on keypress data. Biomedicines, [s.l.], v. 10, n. 11, p. 2746, 2022.pt_BR
dc.identifier.issn2227-9059-
dc.identifier.otherDOI: https://doi.org/10.3390/biomedicines10112746-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/73448-
dc.description.abstractParkinson’s disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject’s key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approachespt_BR
dc.language.isoenpt_BR
dc.publisherBiomedicinespt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectParkinson’s diseasept_BR
dc.subjectNeurodegenerationpt_BR
dc.subjectEarly diagnosispt_BR
dc.subjectKey typingpt_BR
dc.subjectDeep learningpt_BR
dc.subjectConvolutional networkpt_BR
dc.subjectMal de Parkinsonpt_BR
dc.subjectNeurodegeneraçãopt_BR
dc.subjectDiagnóstico precocept_BR
dc.subjectDigitação de teclaspt_BR
dc.subjectAprendizado profundopt_BR
dc.subjectRede convolucionalpt_BR
dc.titleModified squeezeNet architecture for parkinson’s disease detection based on keypress datapt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEEL - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_art_lsbernanrdo.pdf706,84 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.