Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/73448
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Bernardo, Lucas Salvador | - |
dc.contributor.author | Damaševičius, Robertas | - |
dc.contributor.author | Ling, Sai Ho | - |
dc.contributor.author | Albuquerque, Victor Hugo Costa de | - |
dc.contributor.author | Tavares, João Manuel Ribeiro da Silva | - |
dc.date.accessioned | 2023-07-11T16:13:33Z | - |
dc.date.available | 2023-07-11T16:13:33Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | BERNARDO, Lucas Salvador; DAMAŠEVIČIUS, Robertas; LING, Sai Ho; ALBUQUERQUE, Victor Hugo Costa de; TAVARES, João Manuel Ribeiro da Silva. Modified squeezeNet architecture for parkinson’s disease detection based on keypress data. Biomedicines, [s.l.], v. 10, n. 11, p. 2746, 2022. | pt_BR |
dc.identifier.issn | 2227-9059 | - |
dc.identifier.other | DOI: https://doi.org/10.3390/biomedicines10112746 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/73448 | - |
dc.description.abstract | Parkinson’s disease (PD) is the most common form of Parkinsonism, which is a group of neurological disorders with PD-like motor impairments. The disease affects over 6 million people worldwide and is characterized by motor and non-motor symptoms. The affected person has trouble in controlling movements, which may affect simple daily-life tasks, such as typing on a computer. We propose the application of a modified SqueezeNet convolutional neural network (CNN) for detecting PD based on the subject’s key-typing patterns. First, the data are pre-processed using data standardization and the Synthetic Minority Oversampling Technique (SMOTE), and then a Continuous Wavelet Transformation is applied to generate spectrograms used for training and testing a modified SqueezeNet model. The modified SqueezeNet model achieved an accuracy of 90%, representing a noticeable improvement in comparison to other approaches | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Biomedicines | pt_BR |
dc.rights | Acesso Aberto | pt_BR |
dc.subject | Parkinson’s disease | pt_BR |
dc.subject | Neurodegeneration | pt_BR |
dc.subject | Early diagnosis | pt_BR |
dc.subject | Key typing | pt_BR |
dc.subject | Deep learning | pt_BR |
dc.subject | Convolutional network | pt_BR |
dc.subject | Mal de Parkinson | pt_BR |
dc.subject | Neurodegeneração | pt_BR |
dc.subject | Diagnóstico precoce | pt_BR |
dc.subject | Digitação de teclas | pt_BR |
dc.subject | Aprendizado profundo | pt_BR |
dc.subject | Rede convolucional | pt_BR |
dc.title | Modified squeezeNet architecture for parkinson’s disease detection based on keypress data | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
Aparece nas coleções: | DEEL - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2022_art_lsbernanrdo.pdf | 706,84 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.