Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/73418
Type: | Artigo de Periódico |
Title: | Classification of induced magnetic field signals for the microstructural characterization of sigma phase in duplex stainless steels |
Authors: | Silva, Edgard de Macedo Marinho, Leandro Bezerra Rebouças Filho, Pedro Pedrosa Leite, João Pereira Leite, Josinaldo Pereira Fialho, Walter Macedo Lins Albuquerque, Victor Hugo Costa de Tavares, João Manuel Ribeiro da Silva |
Keywords: | Microstructural characterization;Signal classification;Optimum Path Forest;Bayes;Artificial Neural Network;Support Vector Machine;Caracterização microestrutural;Classificação do sinal;Rede neural artificial;Máquina de vetores de suporte |
Issue Date: | 2016 |
Publisher: | Metals |
Citation: | SILVA, Edgard de Macedo; MARINHO, Leandro Bezerra; REBOUÇAS FILHO, Pedro Pedrosa; LEITE, João Pereira; LEITE, Josinaldo Pereira; FIALHO, Walter Macedo Lins; ALBUQUERQUE, Victor Hugo Costa de; TAVARES, João Manuel Ribeiro da Silva. Classification of induced magnetic field signals for the microstructural characterization of sigma phase in duplex stainless steels. Metals, [s.l.], v. 6, n. 7, p. 164, 2016. |
Abstract: | Duplex stainless steels present excellent mechanical and corrosion resistance properties. However, when heat treated at temperatures above 600 ∘C, the undesirable tertiary sigma phase is formed. This phase presents high hardness, around 900 HV, and it is rich in chromium, the material toughness being compromised when the amount of this phase is not less than 4%. This work aimed to develop a solution for the detection of this phase in duplex stainless steels through the computational classification of induced magnetic field signals. The proposed solution is based on an Optimum Path Forest classifier, which was revealed to be more robust and effective than Bayes, Artificial Neural Network and Support Vector Machine based classifiers. The induced magnetic field was produced by the interaction between an applied external field and the microstructure. Samples of the 2205 duplex stainless steel were thermal aged in order to obtain different amounts of sigma phases (up to 18% in content). The obtained classification results were compared against the ones obtained by Charpy impact energy test, amount of sigma phase, and analysis of the fracture surface by scanning electron microscopy and X-ray diffraction. The proposed solution achieved a classification accuracy superior to 95% and was revealed to be robust to signal noise, being therefore a valid testing tool to be used in this domain. |
URI: | http://www.repositorio.ufc.br/handle/riufc/73418 |
ISSN: | 2075-4701 |
Access Rights: | Acesso Aberto |
Appears in Collections: | DEEL - Artigos publicados em revista científica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016_art_emsilva.pdf | 7,15 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.