Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/72606
Tipo: Artigo de Periódico
Título : Variational mode decomposition hybridized with gradient boost regression for seasonal forecast of residential water demand
Autor : Carvalho, Taís Maria Nunes
Souza Filho, Francisco de Assis de
Palabras clave : Water demand;Seasonal forecast;Gradient boosting;Variational mode decomposition
Fecha de publicación : 2021
Editorial : Water Resources Management
Citación : CARVALHO, Taís Maria Nunes; SOUZA FILHO, Francisco de Assis de. Variational mode decomposition hybridized with gradient boost regression for seasonal forecast of residential water demand. Water Resources Management, [S. l.], v. 35, p. 3431-3445, 2021.
Abstract: Climate variability highly influences water availability and demand in urban areas, but medium-term predictive models of residential water demand usually do not include climate variables. This study proposes a method to predict monthly residential water demand using temperature and precipitation, by combining a novel decomposition technique and gradient boost regression. The variational mode decomposition (VMD) was used to filter the water demand time series and remove the component associated with the socioeconomic characteristics of households. VMD was also used to extract the relevant signal from precipitation and maximum temperature series which could explain water demand. The results indicate that by filtering the water demand and climate signals we can obtain accurate predictions at least four months in advance. These results suggest that the climate information can be used to explain and predict residential water demand.
URI : http://www.repositorio.ufc.br/handle/riufc/72606
ISSN : 1573-1650
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DEHA - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2021_art_tmncarvalho2.pdf3,35 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.