Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/7217
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorMontenegro, José Fábio Bezerra-
dc.contributor.authorGomes, Diego Eloi Misquita-
dc.date.accessioned2014-02-07T12:58:37Z-
dc.date.available2014-02-07T12:58:37Z-
dc.date.issued2013-
dc.identifier.citationGOMES, Diego Eloi Misquita. O teorema espectral para operadores não-limitados e autoadjuntos. 2013. 58 f. Dissertação(Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/7217-
dc.description.abstractThe Spectral Theorem is one of the most famous theorems in Functional Analysis, particularly because of the large number of proofs given to it. There are versions for bounded operators, unbounded operators, self-adjoints operators, compacts, on finite-dimensional spaces, on finnite-dimensional spaces. The general version was proved by Stone and Weierstrass during the period 1929-1932, but another proofs emerged over the years. The proof in this monography was given by Edward Brian Davies(1994), which gives an explicity formula for the functional calculus f(H) (where H is an self-adjoint operator) and not only proof its existence. The main idea was originally given by Hel er and Strojand(1989) and in its proofs it used well-knows theorems like Stokes' Theorem,Cauchy's Integral Formula Generalized, Stone-Weierstrass, Liouville's Theorem, besides facts of the theory of linear operators on Hilbert spaces.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectOperadores não-limitadospt_BR
dc.subjectEspectropt_BR
dc.subjectCálculo funcionalpt_BR
dc.subjectAnálise funcionalpt_BR
dc.titleO teorema espectral para operadores não-limitados e autoadjuntospt_BR
dc.typeDissertaçãopt_BR
dc.contributor.co-advisorCibotaru, Florentiu Daniel-
dc.description.abstract-ptbrO Teorema Espectral é um dos teoremas mais famosos da Analise Funcional, principalmente pelo grande número de versões dadas ao mesmo. Existem versões para operadores limitados, ilimitados, autoadjuntos, compactos, em espaços de dimensão finita ou infinita. A versão geral do teorema foi provada independentemente por Stone e Neumann no período de 1929-1932, mas outras provas surgiram ao longo dos anos. A prova contida neste trabalho é de Edward Brian Davies(1994), o qual conseguiu, na prova da versão do teorema para cálculos funcionais, explicitar uma fórmula para f(H) (onde H é um operador não-limitado e autoadjunto) para uma grande classe de funções e não apenas mostrar a existência do mesmo. A principal idéia foi originalmente dada por Helffer e Strojand(1989) e utiliza em sua prova teoremas conhecidos como a Fórmula Integral de Cauchy Generalizada, Teorema da Divergência, Stone Weierstrass, Teorema de Liouville, além de fatos conhecidos da teoria dos operadores lineares em espaços de Hilbert.pt_BR
dc.title.enThe spectral theorem for unbounded and autoadjoints operatorspt_BR
Aparece nas coleções:DMAT - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_dis_demgomes.pdf446 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.