Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/7213
Type: Dissertação
Title: O problema de Bernstein
Title in English: The Bernstein problem
Authors: Gomes, Marlon de Oliveira
Advisor: Jorge, Luquésio Petrola de Melo
Co-advisor: Mari, Luciano
Keywords: Geometria diferencial;Subvariedades mínimas
Issue Date: 2013
Citation: GOMES, Marlon de Oliveira. O problema de Bernstein. 2013. 146 f. Dissertação(Mestrado em Matemática) - Centro de Ciências, Universidade Federal do Ceará, Programa de Pós-Graduação em Matemática, Fortaleza, 2013.
Abstract in Brazilian Portuguese: O problema de Bernstein clássico, resolvido por S. Bernstein em 1915-1917 em seu artigo [12], pergunta se existe um gráfico mínimo completo em R3 além do plano. Bernstein mostrou que a resposta para este problema é não, utilizando métodos analíticos para o estudo de equações de curvatura prescrita. Veremos aqui como este problema está relacionado com a aplicação de Gauss deste gráfico, e como conseqüência desta relação iremos generalizar este teorema para uma classe de superfícies maior (não necessariamente gráficos), seguindo a prova dada por R. Osserman em [51]. Veremos a seguir generalizações deste teorema em dimensões maiores, seguindo essencialmente os métodos introduzidos Por W. Fleming em [31], e refinados posteriormente por E. De Giorgi, em [20], F. Almgren, em [6], e J. Simons, em [62], que resolvem o problema para gráficos em Rn, n < 9 mostrando que o único gráfico mínimo completo nesses espaços é o hiperplano. Mostraremos também que em dimensão n ≥ 9, é possível construir gráficos mínimos completos em Rn, seguindo a prova apresentada por E. Bombieri, E. Di Giorgi e E. Giusti em [14]. Por fim, concluímos com uma extensão do teorema de Bernstein para a classe das subvariedades estáveis com respeito à segunda variação de volume, sob certas condições de crescimento de curvatura ou volume, e investigaremos ainda o caso que a variedade ambiente não é o espaço euclidiano.
Abstract: The classical Bernstein problem, solved by S. Bernstein in 1915-1917 in his article [12], asks if there is a complete minimal graph in R3 besides the plane. Bernstein showed that the answer to this question is no using analytical methods for study of equations of prescribed curvature. We will see here how this problem is related to the Gauss map of the graph, and as consequence of this relationship we generalize this theorem to a larger class of surfaces (not necessarily graphs), following the proof given by R. Osserman in [51]. We will see next generalizations of this theorem in higher dimensions, following essentially the methods introduced by W. Fleming in [31], and later refined by E. De Giorgi in [20], F. Almgren in [6] and J. Simons in [62]. In fact, they solve the problem for graphs in Rn, n < 9, namely they prove that the only complete minimal graph in these espaces is the hyperplane. Following the proof given by E. Bombieri, E. De Giorgi and E. Giusti in [14], we also show that, in dimension n ≥ 9, it is possible to construct complete minimal graphs in Rn. At last, we conclude with an extension of Bernstein’s theorem to the class of submanifolds stable with respect to the second variation of volume, under certain conditions of curvature and volume growth, and yet we investigate the case in which the ambient manifold is not the Euclidean space.
URI: http://www.repositorio.ufc.br/handle/riufc/7213
Appears in Collections:DMAT - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2013_dis_mogomes.pdf3,51 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.