Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/71549
Tipo: TCC
Título : Classificador de malwares em aplicativos android através de redes neurais recorrentes
Autor : Silva, João Marcelo Ravache Fernandes da
Tutor: Rabêlo Filho, Roberto Cabral
Palabras clave : Rede neural recorrente;Malware;Android (Programa de computador)
Fecha de publicación : 2022
Citación : SILVA, João Marcelo Ravache Fernandes da. Classificador de malwares em aplicativos android através de redes neurais recorrentes. 2022. 36 f. Trabalho de Conclusão de Curso (Graduação em Ciência da Computação)-Universidade Federal do Ceará, Campus de Quixadá, Quixadá, 2022.
Resumen en portugués brasileño: Em 2019, o número de ataques de malwares aos dispositivos Android aumentou significativamente, devido ao crescimento da quantidade de aparelhos Android em uso no mundo. Estima-se que o número de ataques dobrou em relação a 2018. Para lidar com esse problema, foi desenvolvido um modelo de rede neural recorrente LSTM, que usa as chamadas de API dos aplicativos como entrada para classificar possíveis malwares. Os resultados mostraram que o modelo obteve um ótimo resultado para a abordagem de análise estática com as chamadas de API, onde obteve-se uma acurácia e precisão de 96,45% e 97,63%, respectivamente.
Abstract: In 2019, the number of malware attacks on Android devices increased significantly due to the growth in the number of Android devices in use worldwide. It is estimated that the number of attacks has doubled compared to 2018. To deal with this problem, an LSTM recurrent neural network model was developed, which uses API calls from applications as input to classify possible malware. The results showed that the model obtained an excellent result for the static analysis approach with API calls, achieving accuracy and a precision of 96,45% e 97,63%, respectively.
URI : http://www.repositorio.ufc.br/handle/riufc/71549
Aparece en las colecciones: CIÊNCIA DA COMPUTAÇÃO-QUIXADÁ - Monografias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2022_tcc_jmrfsilva.pdf786,18 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.