Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70737
Tipo: Artigo de Evento
Título: Identification of separable systems using trilinear filtering
Autor(es): Ribeiro, Lucas Nogueira
Almeida, André Lima Férrer de
Mota, João César Moura
Data do documento: 2015
Instituição/Editor/Publicador: International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Citação: RIBEIRO, L. N.; ALMEIDA, A. L. F.; MOTA, J. C. M. Identification of separable systems using trilinear filtering. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTATIVE PROCESSING, 6., 2015, Cancún. Anais... Cancún: IEEE, 2015. p. 189-192.
Abstract: Linear filtering methods are well known and have been successfully applied in system identification and equalization problems. However, they become unpractical when the number of parameters to estimate is very large. The recently proposed assumption of system separability allows the development of computationally efficient alternatives to classic adaptive methods in this scenario. In this work, we show that system separability calls for multilinear system representation and filtering. Based on this parallel, the proposed filtering framework consists of a trilinear extension of the classical Wiener-Hopf (WH) solution that exploits the separability property to solve the supervised identification problem. Our numerical results shows the proposed algorithm can provide a better accuracy than the classical WH solution which ignores the multilinear system representation.
URI: http://www.repositorio.ufc.br/handle/riufc/70737
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_eve_jcmmota.pdf429,16 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.