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Abstract—Linear filtering methods are well known and have
been successfully applied in system identification and equalization
problems. However, they become unpractical when the number
of parameters to estimate is very large. The recently proposed
assumption of system separability allows the development of
computationally efficient alternatives to classic adaptive methods
in this scenario. In this work, we show that system separability
calls for multilinear system representation and filtering. Based
on this parallel, the proposed filtering framework consists of a
trilinear extension of the classical Wiener-Hopf (WH) solution
that exploits the separability property to solve the supervised
identification problem. Our numerical results shows the proposed
algorithm can provide a better accuracy than the classical WH
solution which ignores the multilinear system representation.

I. INTRODUCTION

System identification is the problem of identifying
parameters of an unknown system [1]. When the system input
and output are available, supervised techniques such as the
so-called Wiener-Hopf (WH) solution can be employed to
identify the system response. Indeed, the WH solution is the
minimum mean square error (MMSE) estimator for linear
filters. However, it becomes inadequate for online system
identification due to its relatively high computational cost.
An alternative to this approach consists of using an adaptive
filter. The coefficients of this device are updated according
to an algorithm that minimizes the energy of the estimation
error. The so-called least mean squares (LMS) algorithm
is the canonical to adaptive filtering method due to its
implementation simplicity and low complexity. Nevertheless,
LMS-based algorithms suffer from slow convergence rate
when the parameter space becomes too large [2].

Many ideas have been proposed to ameliorate the
convergence rate of adaptive algorithms. For instance, step-size
adaptation [3] and sparsity constraints [4] are known
approaches for learning rate improvement. Recently, the
authors in [2] proposed a low complexity LMS algorithm
with fast learning rate, therein referred to as TensorLMS,
which exploits the system separability assumption, meaning
that the system impulse response vector can be decomposed
as the Kronecker products of two vectors representing its
components. Indeed, this assumption is plausible in Volterra
systems [5] and array processing [6]. In [2], the existence and
uniqueness of second-order separable systems was discussed.
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Higher-order tensor filtering presents itself as the proper
signal processing framework for exploiting multilinearly
structured systems. Multilinear filtering was first introduced
in the context of noise reduction in color images and
multicomponent seismic data [7]. In this context, the
higher-order tensor data is corrupted by a multidimensional
noise and the original data is recovered by filtering the
observed tensor data by matrix filters operating on each mode.
Since reference signals were not available, the optima filters
are obtained from subspace decomposition. In [8], a tensor
(trilinear) filtering framework was proposed for equalization
problems.

In this work, the multilinearity of separable systems
is exploited for solving the identification problem using
higher-order tensor modeling and filtering. More specifically,
we assume that the overall system impulse response is
third-order separable, i.e. it can be factored as the Kronecker
product of three components. A tensor formalism is used to
devise an algorithm for the identification of the system impulse
response, leading to the trilinear extension of the WH solution.
Furthermore, this tensor formalism provides proper notation
and insight regarding the filtering operations. The proposed
method employs an alternating minimization approach,
whereas TensorLMS is based on the stochastic gradient descent
method. According to our numerical simulations, the proposed
algorithm overcomes the drawbacks of its classic counterpart
and provides better system estimation quality.

Notation: Lowercase letters denote scalars, lowercase
boldface letters denote vectors, uppercase boldface letters
denote matrices and calligraphic letters denote higher-order
tensors. The symbol ⌦ denotes the Kronecker product, ⇧
Khatri-Rao product, k · k22, ⇥n n-mode product, Euclidean
norm, E[·] statistical expectation, and (·)T transpose operator.

II. THE TRILINEAR FILTERING FRAMEWORK

Before presenting the trilinear filtering framework and its
connection with the system identification problem, some useful
tensor formalism is given for later use.

A. Tensor preliminaries

The {1, . . . , N}-mode products of T with N matrices
{U(n)}Nn=1 yield the tensor T̃ = T ⇥1 U

(1) . . .⇥N U

(N) 2
RJ1⇥...⇥JN defined as [9]

[T̃ ]j1,...,jN =
I1X

i1=1

. . .

INX

iN=1

xi1,...,iNu
(1)
j1,i1

. . . u
(N)
jN ,iN

,
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where U

(n) 2 RJn⇥In , in 2 {1, . . . , In}, and jn 2
{1, . . . , Jn}, n = 1, . . . , N . The n-mode unfolding of T̃ is
given by

T̃(n) = U

(n)
T(n)U

⌦nT

, (1)

where T(n) denotes the n-mode unfolding of T , and

U

⌦n = U

(N) ⌦ . . .⌦U

(n+1) ⌦U

(n�1) ⌦ . . .⌦U

(1)

denotes the Kronecker product of the matrices {U(j)}Nj=1,j 6=n
in the decreasing order. Note that the {1, . . . , N}-mode
products of T with the N vectors {u(n)}Nn=1 yields a scalar
t = T ⇥1 u

(1)T . . . ⇥N u

(N)T where u

(n) 2 RIn⇥1, n =
1, . . . , N .

Vector-Tensorization: Let us consider the linear map ⇥ :
RI1I2I3 ! RI3⇥I2⇥I1 , defined as

[⇥(v)]i3,i2,i1 = [v]i3+I3(i2�1)+I2I3(i1�1) , (2)

where v 2 RI1I2I3 is the input vector, which can be partitioned
into I1 partitions of length I2I3. These partitions can be further
divided into I2 subpartitions of length I3. The input vector
can be transformed into a third-order tensor V = ⇥(v) 2
RI3⇥I2⇥I1 . The operation of transforming a vector (or matrix)
into a tensor is referred to as “tensorization” [10], [11]. There
are different forms of tensorization operations, and the specific
transformation depends on the considered application. In our
case, tensorization is deterministic and achieved by vector
tri-partitioning, according to (2). The vector-tensorization is
an isometric isomorphism for the l2-norm of v on RI1I2I3 and
the Frobenius norm of V on RI3⇥I2⇥I1 .

B. Trilinear filtering

Consider an M th order finite impulse response (FIR)
filter with impulse response z 2 RM . The input regression
vector and the output signal at instant k are represented by
x(k) 2 RM and y(k) = z

T
x(k), respectively. Let us suppose

this filter is third-order separable, i.e. it can be expressed as
z = za ⌦ zb ⌦ zc, where za 2 RMa , zb 2 RMb , and zc 2 RMc

are its component subfilters, with MaMbMc = M . This
corresponds to a rank-one third-order tensor decomposition
problem [11]. In view of this, its existence and uniqueness
in the least squares (LS) sense is guaranteed [12], [13]. Since
there are no results ensuring the estimation error bound for
higher-order tensor decompositions, devising the closed-form
MMSE expression for a third-order tensor decomposition is a
challenge.

In order to express the output signal y(k) = z

T
x(k)

as the outcome of a trilinear filtering, let us partition
the input signal into x(k) = [x1(k),x2(k), . . . ,xMa(k)]

T

where xma(k) 2 RMbMc for ma = 1, . . . ,Ma. Now, let
us further divide each partition xma(k) into xma(k) =
[x1,ma(k),x2,ma(k), . . . ,xMb,ma(k)]

T, where xmb,ma(k) =
[x1,mb,ma(k), x2,mb,ma(k), . . . , xMc,mb,ma(k)]

T 2 RMc for
mb = 1, . . . ,Mb and xmc,mb,ma(k) 2 R is an element of
the third-order tensor X (k) = ⇥[x(k)] 2 RMc⇥Mb⇥Ma . The

(a) System identification
using classical adaptive
filtering.

(b) System identification using trilinear
filtering.

Fig. 1. Comparison between classical and trilinear WH approaches.

output signal can be written as:

y(k) = (za ⌦ zb ⌦ zc)
T
x(k)

=
MaX

ma=1

[za]ma
(zb ⌦ zc)

T
xma(k)

=
MaX

ma=1

MbX

mb=1

[za]ma
[zb]mb

z

T
cxmb,ma(k)

=
MaX

ma=1

MbX

mb=1

McX

mc=1

[za]ma [zb]mb [zc]mcxmc,mb,ma(k). (3)

Note that y(k) is trilinear with respect to the elements of the
subfilters as seen on (3). This operation is identified as the
{1, 2, 3}-mode product (1):

y(k) = X (k)⇥1 z
T
c ⇥2 z

T
b ⇥3 z

T
a , (4)

= z

T
c uc(k) = z

T
c X(1)(k)(za ⌦ zb) (5)

= z

T
b ub(k) = z

T
b X(2)(k)(za ⌦ zc) (6)

= z

T
aua(k) = z

T
aX(3)(k)(zb ⌦ zc) (7)

where uc(k) = X(1)(k)(za ⌦ zb) 2 RMc , ub(k) =
X(2)(k)(za ⌦ zc) 2 RMb , and ua(k) = X(3)(k)(zb ⌦ zc) 2
RMa are the input of the subfilters zc, zb, and za, respectively.
The matrices X(1)(k) 2 RMc⇥MaMb , X(2)(k) 2 RMb⇥MaMc ,
and X(3)(k) 2 RMa⇥MbMc denote the {1, 2, 3}-mode
unfoldings of X (k), respectively. Equations (5), (6), and (7)
indicate that the product (4) can be equivalently represented
by the output of the three linear subfilters

C. Optimum trilinear filtering

Consider an M th order unknown trilinearly separable FIR
system whose impulse response is h = ha ⌦ hb ⌦ hc, where
ha 2 RMa , hb 2 RMb , hc 2 RMc and MaMbMc = M . Now
consider a trilinearly separable filter w = wa⌦wb⌦wc, where
wa 2 RMa , wb 2 RMb and wc 2 RMc are its subfilters. The
input regression vector x(k) 2 RM is tensorized, resulting
in the input tensor signal X (k) = ⇥(x(k)) 2 RMc⇥Mb⇥Ma .
Both the unknown system and the trilinear filter are driven
by this tensor signal. The output of the unknown system is
the desired signal d(k) = h

T
x(k) of the trilinear filter, as

depicted in Fig. 1(a). At the filter output, the estimation error
e(k) = d(k) � y(k) is calculated, where y(k) = w

T
x(k) =

X (k) ⇥1 w

T
c ⇥2 w

T
b ⇥3 w

T
a is the filter output. The mean

square value of the estimation error is chosen to design the
filter, leading to the following optimization problem:

min
wa,wb,wc

E
⇥
|d(k)� X (k)⇥1 w

T
c ⇥2 w

T
b ⇥3 w

T
a |2

⇤
. (8)
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The objective function is clearly nonlinear with respect to the
subfilters. Recalling that y(k) can be represented in terms of its
subfilters, the problem (8) can be divided in three subproblems:

min
wa

E
h��d(k)�w

T
aua(k)

��2
i
, (9)

min
wb

E
h��d(k)�w

T
b ub(k)

��2
i
, (10)

min
wc

E
h��d(k)�w

T
c uc(k)

��2
i
, (11)

where ua(k), ub(k), and uc(k) are defined as in Section
II-B. Note that these vectors can be alternatively interpreted
as weighted versions of the X (k) unfoldings. There is clearly
an interdependency between the modes of y(k) which hinders
the optimization of (8). In view of this, the alternating
least-squares (ALS) method can be used to solve (8). In this
case, the subproblems (9), (10), and (11) are solved in a
alternating manner. This method converges at least to a local
minimum, and convergence to the global minimum cannot
be guaranteed. Each subproblem corresponds to a classical
LS estimation problem [1] (conditioned on the solutions
provided by the other two subproblems). The solution of these
subproblems is given by the WH equations:

ŵa = R

�1
a pa, (12)

ŵb = R

�1
b pb, (13)

ŵc = R

�1
c pc, , (14)

where R� = E
⇥
u�(k)u�(k)T

⇤
2 RM�⇥M� is the

autocorrelation matrix of u�(k), and p� = E [d(k)u�(k)] 2
RM� is the crosscorrelation vector between u�(k) and d(k)
for � = a, b, c. Note that these statistics can be expressed in
terms of adaptive weighting matrices. For instance, consider
the autocorrelation matrix of ua(k):

Ra = E
⇥
ua(k)ua(k)

T
⇤

= E
⇥
X(3)(k)(wb ⌦wc)(wb ⌦wc)

T
X(3)(k)

T
⇤

= E
⇥
X(3)(k)QaX(3)(k)

T
⇤
. (15)

Now Ra is interpreted as the autocorrelation matrix of X(3)(k)
weighted by Qa = (wb⌦wc)(wb⌦wc)T. The crosscorrelation
vector pa can be interpreted as the weighted crosscorrelation
between X(3)(k) and d(k):

pa = E [d(k)ua(k)]

= E
⇥
d(k)X(3)(k)(wb ⌦wc)

⇤

= E
⇥
d(k)X(3)(k)qa

⇤
, (16)

where qa = (wb ⌦wc) and Qa = qaq
T
a .

D. Trilinear Wiener-Hopf algorithm

To implement the ALS optimization, the batch Trilinear
Wiener-Hopf (TriWH) algorithm is proposed. It consists of
sequentially calculating (12), (13), and (14) using the sample
estimate of the autocorrelation matrices and crosscorrelation
vectors, as described in Algorithm 1. The convergence is
attained when the normalized square error (NSE) between
the true filter h and the estimated filter w is smaller than
a threshold ".

While the classical WH solution presents the
standard complexity of O(M2) due to the inversion of

Algorithm 1 TriWH
procedure TRIWH(x(k), d(k), h, ")

q  0
Initialize NSE(q), wa(q), wb(q) and wc(q).
repeat

Initialize R�(k) and p�(k) for � = a, b, c
qc(q) (wa(q)⌦wb(q))
Qc(q) qcq

T
c

for k = 0, . . . ,K � 1 do
X (k) ⇥(x(k))
Rc(k + 1) Rc(k) + (1/K)X(1)(k)Qc(q)X(1)(k)

T

pc(k + 1) pc(k) + (1/K)d(k)X(1)(k)qc(q)
end for
wc(q + 1) Rc(k + 1)�1

pc(k + 1)

qb(q) (wa(q)⌦wc(q + 1))
Qb(q) qbq

T
b

for k = 0, . . . ,K � 1 do
X (k) ⇥(x(k))
Rb(k + 1) Rb(k) + (1/K)X(2)(k)Qb(q)X(1)(k)

T

pb(k + 1) pb(k) + (1/K)d(k)X(2)(k)qb(q)
end for
wb(q + 1) Rb(k + 1)�1

pb(k + 1)

qa(q) (wb(q + 1)⌦wc(q + 1))
Qa(q) qaq

T
a

for k = 0, . . . ,K � 1 do
X (k) ⇥(x(k))
Ra(k + 1) Ra(k) + (1/K)X(3)(k)Qa(q)X(3)(k)

T

pa(k + 1) pa(k) + (1/K)d(k)X(3)(k)qa(q)
end for
wa(q + 1) Ra(q + 1)�1

pa(q + 1)
q  q + 1
w(q) wa(q)⌦wb(q)⌦wc(q)
NSE(q) = kh�w(q)k22 / khk

2
2

until |NSE(q)� NSE(q � 1)| < "
end procedure

a (M ⇥M)-dimensional autocorrelation matrix, TriWH
presents a complexity of O(Q(M2

a +M2
b +M2

c )), where Q is
the number of iterations necessary to attain the convergence.
This computational complexity considerably smaller than
its classic counterpart depending on how the input vector
partitioning is done [2].

III. NUMERICAL RESULTS

A separable FIR filter h = ha ⌦ hb ⌦ hc 2 RM with M =
1024 parameters was estimated in the carried out experiments.
The subfilters were defined similar to [2]: ha 2 R8 is a
vector whose math element is given by [ha]ma = 0.9ma�1

for ma = 1, 2, . . . , 8, hb = [0, 0, . . . , 0, 1, 0]T 2 R32, and
hc 2 R4 is a vector whose elements are Gaussian random
variables with zero mean and unitary variance. This setup,
depicted in Fig. 2, approximates a channel with echoes [2].
The input signal x(k) was taken from a zero mean and unit
variance Gaussian random process. An additive white Gaussian
noise (AWGN) term with zero mean and variance 10�2 was
added to the desired signal d(k) for k = 0, . . . ,K � 1. The
sample size was set to K = 15000 in all experiments.

Monte Carlo simulations with N independent realizations
were performed to assess the performance of NLMS,
TensorLMS, TriWH, and the WH solution. The step-size of
the LMS-based algorithms was set to 0.5. Independent impulse
responses h

(n) were generated for each nth realization.
The normalized mean square error (NMSE) between the
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Fig. 2. Example of separable impulse response considered in this work.

actual and estimated filter at the qth iteration, defined as
1
N

PN
n=1 kh(n) � w

(n)(q)k22/kh(n)k22, was used to measure
the system mismatch. In the first experiment, the system to
be identified was assumed to be perfectly separable. The
performance of the studied methods is depicted in the left
plot in Fig. 3. In the second experiment, their performances
were assessed when the system was not perfectly separable.
To reproduce this scenario, an AWGN component with zero
mean and variance 10�4 was added to the true system impulse
response. The right plot in Fig. 3 depicts their performance in
this scenario.

When the system separability assumption holds, the TriWH
solution presents the smallest system mismatch. It is an
expected result since TriWH is a nonlinear method that was
designed to properly explore the system separability, which
is ignored by the classic methods. Furthermore, the adaptive
weighting present in the autocorrelation and crosscorrelation
matrices and vectors (c.f. (15) and (16)) contribute as well
to the performance gain, playing the role of a weighted LS
estimation with adjustable weights. It is important to recall
that TriWH is less computationally expensive than its classical
counterpart that do not exploit system separability. Regarding
the iterative solutions, it can be seen that TriWH presented
the best performance. In our simulations, the algorithm
converged in about 3 iterations and presented a relative system
mismatch much lower than the other algorithms. However,
its computational complexity is greater than the iterative
alternatives due to the calculation of matrix inverses. We
also note that when the unknown system was not perfectly
separable, TensorLMS and TriWH do not perform very well,
since they could only identify the separable components. Since
TensorLMS exploits the system separability, its performance
could be similar to that of TriWH by setting a sufficiently small
step-size, which would considerably decrease its convergence
rate.

IV. CONCLUSION AND PERSPECTIVES

The tensor filtering framework was introduced in the
supervised separable system estimation problem. Such type
of system is useful to model multidimensional array of
sensors. The tensor formalism present in this framework
provided proper notation and interpretation for this trilinear
problem. A nonlinear problem was considered to perform
the identification. This problem was solved by exploiting its
trilinear structure, leading to three linear subproblems. Based
on this idea, the TriWH algorithm was proposed. According to
our numerical experiments, it performed better than alternative
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Fig. 3. Performance evaluation when the system is perfectly separable (left)
and not perfectly separable (right).

solutions. A convergence analysis and the extension to the
multichannel case will be provided in an extended version of
this paper.
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