Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70718
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBessa, Renan-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T17:12:21Z-
dc.date.available2023-02-09T17:12:21Z-
dc.date.issued2019-
dc.identifier.citationBESSA, R.; BARRETO, G. A. Robust echo state network for recursive system identification. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 15., 2019, Grã Canária. Anais... Grã Canária: Springer, 2019. p. 1-12.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70718-
dc.description.abstractThe use of recurrent neural networks in online system identification is very limited in real-world applications, mainly due to the propagation of errors caused by the iterative nature of the prediction task over multiple steps ahead. Bearing this in mind, in this paper, we revisit design issues regarding the robustness of the echo state network (ESN) model in such online learning scenarios using a recursive estimation algorithm and an outlier robust-variant of it. By means of a comprehensive set of experiments, we show that the performance of the ESN is dependent on the adequate choice of the feedback pathways and that the prediction instability is amplified by the norm of the output weight vector, an often neglected issue in related studies.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Work-Conference on Artificial Neural Networkspt_BR
dc.subjectOnline system identificationpt_BR
dc.subjectRecurrent neural networkspt_BR
dc.subjectEcho state networkpt_BR
dc.subjectRecursive estimationpt_BR
dc.subjectRobustness to outlierspt_BR
dc.titleRobust echo state network for recursive system identificationpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_gabarreto.pdf447,06 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.