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Abstract. The use of recurrent neural networks in online system iden-
tification is very limited in real-world applications, mainly due to the
propagation of errors caused by the iterative nature of the prediction
task over multiple steps ahead. Bearing this in mind, in this paper, we
revisit design issues regarding the robustness of the echo state network
(ESN) model in such online learning scenarios using a recursive estima-
tion algorithm and an outlier robust-variant of it. By means of a com-
prehensive set of experiments, we show that the performance of the ESN
is dependent on the adequate choice of the feedback pathways and that
the prediction instability is amplified by the norm of the output weight
vector, an often neglected issue in related studies.

Keywords: Online system identification · Recurrent neural networks ·
Echo state network · Recursive estimation · Robustness to outliers.

1 Introduction

The echo state network (ESN) [7] is a recurrent neural network (RNN) that
has a large set of neurons, the so-called reservoir, with sparse interconnections
and feedback pathways. The input weights of the reservoir neurons, the internal
and the ones responsible for connecting the system input and output, are fixed
and randomly assigned. Training of this network requires the estimation of the
weights of the neurons in the output layer (aka, readout layer). This estimation
is carried out via linear regression, usually by means of the well-known OLS
method. The randomized nature of the ESN combined with the linear estimation
of the output layer weights makes its design very simple if compared to the other
RNNs. In Figure 1 is depicted the standard architecture of the ESN.

? This study was financed by the following Brazilian research funding agencies:
CAPES (finance code 001), FUNCAP (BMD-008-01413.01.02-17) and CNPq (grant
309451/2015-9).
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Fig. 1: The basic setup of ESN indicating feedforward (solid lines) and feedback
(dashed lines) pathways. W, Win, Wback and Wout are weight matrices.

The ESN has been used as a powerful tool for the prediction of chaotic series,
attractor reconstruction, and for nonlinear system modelling in general [8]. In or-
der to improve this network to handle real-world data, which commonly contain
non-Gaussian noise and inconsistent points (outliers), some works introduced
robust estimation methods for the estimation of the readout layer weights. One
of the simplest methods is the Tikhonov regularization, which penalizes weight
vector with a high norm, reducing model overfitting to the corrupted data [10].

More complex approaches have also been proposed, including Bayesian infer-
ence, replacing the usual Gaussian likelihood function, which is very sensitive to
the outliers, by a Laplacian [9] or mixed-Gaussian distribution [6]. Furthermore,
the use of performance criteria based on the information theoretic learning, called
Maximum Correntropy [5] and Generalized Correntropy [13], have also achieved
good results in diminishing sensitivity to outliers.

Other robust ESN approaches, replace the usual linear output layer with
a nonlinear framework, trying to take full advantage of the dynamics of the
reservoir, whose output signals are inputted to the readout layer. One of such ap-
proaches applies SVM formulation with robust cost functions such as ε-insensitive
loss or Huber [11]. Other approaches use kernel adaptive filtering methods, such
as the kernel recursive least squares (RLS) algorithm [14]. Although it has not
been evaluated directly, there are references that in arrangements of the ESN
with Laplacian Eigenmaps algorithm [6], mediating a decrease of the dimension-
ality of the reservoir states, and with Gaussian process regression models [3] may
be able to decrease the sensitivity to outliers.

Despite the powerful modeling capabilities of the aforementioned ESN archi-
tectures, their application to nonlinear system identification is limited. This is
particularly true for real-world application scenarios involving online long-term
iterative predictions over multiple steps ahead. Since the chance to meet out-
liers in such scenarios is very high, the propagation of errors due to the iterative
nature of the prediction task causes divergence (i.e. instability) in the predicted
signals as time passes. Such instability is amplified by the norm of the output
weight vector, an often neglected issue in previous studies.

Bearing the stability of long-term prediction in mind, in this work we revisit
the RLS-ESN [8] model, ESN combined with the RLS estimation algorithm, for
online system identification in the presence of outliers. By exploring variations
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in the feedback pathways of the ESN and replacing the RLS algorithm with a
robust variant of it [2] we show that the ESN can be safely used for long-term
multiple-step-ahead prediction tasks. The role of the norm of the weights in
the propagation of errors is also evaluated. A comprehensive set of computer
simulations using data from real-world and synthetic systems are carried out,
which are contaminated by outliers in different proportions.

2 Fundamentals of the Echo State Network

The parameter estimation process in discrete-time system identification requires
the availability of input and output observations from a system of interest:
(u(n), t(n))Nall

n=0 , where u(n) = [u1(n), u2(n), . . ., uK(n)]T is a K-dimensional
input vector and t(n) = [t1(n), t2(n), . . ., tL(n)]T is an L-dimensional output
vector at a given instant n, n = 1, . . . , Nall. This dataset is then divided into
training and test subsets, Nall = Ntrain +Ntest. Once adequate training is com-
pleted, the ESN is required to predict output vectors y(n) ∈ RL×1 with the
smallest possible deviation from t(n).

The activations of the R reservoir neurons, also called state variables, are
denoted by x(n) ∈ RR×1, being computed as

x(n) = f(Wx(n− 1) +Winu(n) +Wback(t(n− 1) +v1(n)) +v2(n)−b), (1)

where f(·) is a nonlinear activation function with element-wise operation, usually
the logistic sigmoid or the tanh function, W ∈ RR×R is the internal weight
matrix of the reservoir, which is responsible for the reservoir feedback pathways,
and Win ∈ RR×K and Wback ∈ RR×L are the weight matrices that connect the
input and output of the model to the reservoir, respectively. The terms v1(n) ∈
RL×1 and v2(n) ∈ RR×1 are optional white noise vectors, while b ∈ RR×1 is the
bias vector.

The output of the neural model is computed as

y(n) = fout (Wouth(n)) , (2)

where fout(·) is the activation function of the output neurons (usually, the iden-
tity function), Wout ∈ RL×(1+K+R+L) is the output weight matrix, h(n) =
[−1, u(n), x(n), (t(n− 1) + v1(n))]T ∈ RH×1 is a concatenated vector, so that
H = 1 +K +R+ L.

The elements of the weight matrices W, Win and Wback are randomly as-
signed and kept fixed during training and testing of the model. However, W
must be sparse, i.e. it must contain only a small percentage of nonzero elements.
In order to guarantee the “echo state” property1, the spectral radius of W must
be chosen to be within the unit circle. The magnitudes of the noise vectors v1(n)
and v2(n) must be chosen aiming at reaching a tradeoff between the stability
and accuracy of the model. These vectors also help to regularize the solution.
Details on the ESN configuration can be found in [7].

1 That of relating asymptotic properties of the excited reservoir dynamics to the driv-
ing signal.
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2.1 Recursive algorithms for parameter estimation

In this paper we are dealing with SISO systems; thus, a single output is con-
sidered. The goal of training is to estimate recursively the weight vector wout ∈
RH×1. We aim at comparing two estimation methods, namely: the standard RLS
algorithm, whose cost function is JLS(n) =

∑n
i=1 γ

n−ie2(i), where 0 < γ ≤ 1 is
the forgetting factor and e(n) = t(n) −wT

out(n − 1)h(n) is the prediction error
at instant n, and the recursive Least M -estimate algorithm (RLM), whose cost
function is given by

Jρ(n) =

n∑
i=1

γn−iρ(e(i)), (3)

where ρ(e) is a function whose purpose is to limit the negative effect caused by
very large errors (either caused by non-Gaussian noise or outliers). The RLM
algorithm reduces to the standard RLS when ρ(e(i)) = e2(i).

The optimal output weights can be determined by differentiating Jρ(n) with
respect to wout and setting the derivatives to zero. After some algebric manip-
ulation, the resulting RLM algorithm involves the following equations:

wout(n) = wout(n− 1) + e(n)k(n), (4)

k(n) =
q(e(n))S(n− 1)h(n)

q(e(n))hT (n)S(n− 1)h(n) + γ
(5)

S(n) = γ−1
(
I− k(n)hT (n)

)
S(n− 1) (6)

where k(n) is the gain vector and q(e) = 1
e
∂ρ(e)
∂e . The matrix S(n) is the online

estimate of the inverse of the correlation matrix, i.e. S(n) = R−1(n).
In this paper, we use the classic Huber function

ρ(e) =


e2

2
, |e| < ξ

ξ|e| − ξ2

2
, |e| > ξ,

⇒ q(e) =


1, |e| < ξ

ξ

|e|
, |e| > ξ,

(7)

where ξ is a threshold value. Errors high than this threshold are to be considered
an outlier. It should be noted that q(e) = 1 for errors smaller than the threshold
ξ; otherwise, q(e)→ 0 as |e| → ∞.

It is possible to estimate ξ continuously for each new input. For this purpose,
one can use the following expression:

ξ(n) = 2.576σ̂(n), (8)

where σ̂(n) is a robust estimate of the standard deviation of the residuals:

σ̂2(n) = c1med{e2(n), ..., e2(n−Nw + 1)}, (9)

so that c1 = 1.483(1 + 5/(Nw − 1)), med{·} is the sample median and Nw is the
window length. The robustness and computational complexity of the method
increases with increasing the value of Nw.
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Fig. 2: ESN architecture during training (dashed lines are optional connections).

3 Methodology of Evaluation and Simulation

The ESN architecture diagram is outlined in Figure 2. Our goal is to evaluate
the following variants of the ESN architecture: (i) Model 1 (M1) - connection
pathways 1 and 2 disabled; (ii) Model 2 (M2) - connection pathway 1 enabled,
connection pathway 2 disabled; and (iii) Model 3 (M3) - connection pathways
1 and 2 enabled.

Three approaches to estimating the output weight vector wout are also eval-
uated. The standard RLS algorithm is used as a baseline of reference against
which the plain RLM algorithm is contrasted. A third approach is specific to the
task of iterated prediction, aiming at providing higher stability of the prediciton
over longer time horizons, when outliers are present in the data.

RLM with Outlier Detection (RLM-OD): At iteration n, the output predic-
tion is computed as y(n) = wT

out(n − 1)h(n). The prediction error is computed
as e(n) = t(n)−wT

out(n− 1)h(n) and used by the RLM algorithm as shown in
Eqs. (4) and (5). However, if |e(n)| > ξ, this has happened because the target
output t(n) is probably an outlier. Then, in the next training iteration, we re-
place the actual observation t(n) with its predicted value y(n) in order to avoid
filling in the input regression vector with outliers.

3.1 Evaluation and Simulation

All the datasets used in the experiments come from SISO systems. They are
listed in Table 1, with some details added. For the sake of model building and
validation, the datasets are divided as follows: the first half of the samples for
training, from 0 to Ntrain − 1, and the second half for the test, from Ntrain to
Nall − 1. It is worth mentioning that once the systems of interest are SISO, the
input vector u ∈ RK , the target vector t ∈ RL, and the random noise vector
v1 ∈ RK become scalars (i.e. K = 1 and L = 1). The random noise vector
v2 ∈ RR has the same dimension of the number of units in the reservoir.
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System Description # samples (Nall) Ref.

TOP A Synthetic Tenth-Order Problem (Example 5) 2000 [1]

Tank Cascaded tanks (Tank2.mat; lower tank: y0) 7500 [12]

Dryer A laboratory setup acting like a hair dryer (96-006) 1000 [4]

Exchanger A liquid-saturated steam heat exchanger (97-002) 4000 [4]

Robot Arm A flexible robot arm (96-009) 1024 [4]

Table 1: List of datasets used in the computer experiments.

Two criteria were used for the evaluation of the ESN models. The root mean
square error (RMSE) of the iterated predictions,

RMSE =

√∑Nall−1
n=Ntrain

(t(n)− y(n))2

Ntest
(10)

and the Euclidean norm (l2) of the output weight vector, ||wout||. These two
figures of merit are important in assessing the model quality.

The default setting for all simulations of this work is shown in the Table 2.
The number of reservoir neurons, R, is checked for each system, without the
presence of outliers and with the RLS, seeking a balance between the RMSE,
overfitting and stability, for R ∈ {10, 25, 50, 100, 150, ..., 500}. The RLM algo-
rithm has an extra parameter, Nw, which defines the size of the sample window
for calculating the threshold ξ. We decided to use all available samples up to the
iteration n, that is, Nw is increasing and ranges from 0 to Ntrain − 1.

The robustness of the methods are evaluated for outliers contamination sce-
narios of 5%, 10% e 15% of training samples. These are generated by σtrainT (0, 2),
where σtrain is the standard deviation of the original training data and T (0, 2) is
a Student-T distribution with zero mean and two degrees of freedom. The values
returned from the Student-T distribution are saturated at ±20. The systems’ in-
puts and outputs, with and without outliers, are normalized by subtracting the
mean and dividing by three times the standard deviation value of the training
samples. The RMSE is calculated with the non-normalized data values. Twenty
(20) independent training/testing runs are executed for each contamination sce-
nario, for which all weights/biases and outliers are randomly initialized. In each
runs, the same weights and the same contamination of the data are applied to
each investigated model in order to carry out a fair performance comparison
for the different ESM models (M1, M2 and M3) and the parameter estimation
methods (RLS, RLM and RLM-OD).

4 Results

Before running the final simulations, the number of neurons in the reservoir was
chosen by experimentation with outlier-free data. It was observed the conver-
gence to a minimum value of the RMSE with the increase in the number of
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ESN CONFIGURATION

Spectral Radius (W) 0.98

Sparsity (W) 2%

Input Weights Win ∼ U(−0.1, 0.1)

Feedback Weights Wback ∼ U(−0.1, 0.1)

Bias Weights b ∼ U(−0.1, 0.1)

Noise Vector 1 v1 ∼ U(−0.0001, 0.0001)

Noise Vector 2 v2 ∼ U(−0.0001, 0.0001)

RLS/RLM CONFIGURATION

Forgetting Factor (γ ) 0.99998

S(0) 104I

Table 2: Default setting of several hyperparameters for the simulations.

Datasets
(value of R)

Model M1 Model M2 Model M3

TOP
(500)

RMSE 0.0312±0.0105(0.0279) 0.0314±0.0110(0.0270) 0.0344±0.0079(0.0316)

Norm 98.04±20.34(101.73) 75.22±15.10(76.94) 62.27±16.72(67.88)

Tank
(500)

RMSE 0.3227±0.0916(0.3202) 0.1568±0.0244(0.1579) 0.1056±0.0122(0.1033)

Norm 152.64±47.61(146.76) 5.09±0.82(5.33) 2.36±0.08(2.36)

Dryer
(250)

RMSE 0.1356±0.0377(0.1229) 0.1238±0.0212(0.1165) 0.1299±0.0170(0.1237)

Norm 18.79±2.33(19.01) 8.59±0.85(8.43) 8.34±1.24(8.17)

Exchanger
(450)

RMSE 0.2432±0.0305(0.2339) 0.2507±0.0327(0.2400) 0.2312±0.0348(0.2227)

Norm 37.05±4.28(37.24) 33.449±2.80(33.23) 24.03±2.86(24.74)

Robot Arm
(500)

RMSE 0.2840±0.0459(0.2785) 0.2991±0.0552(0.2907) 0.0238±0.0136(0.0198)

Norm 165.89±16.35(172.85) 118.25±11.39(121.78) 2.33±0.30(2.25)

Table 3: Models’ performances using the RLS algorithm with outlier-free data.

neurons for all datasets. In Table 3, it is shown the chosen number of neurons
chosen and the results achieved by the RLS-ESN for the three evaluated archi-
tectures (M1, M2 and M3) using the RLS algorithm. These results are expressed
in the following format: mean± std(median), respectively, the mean, standard
deviation and median of the RMSE values and the norm of wout averaged along
the 20 independent runs.

Keeping the same number of neurons in the reservoir, the models’ perfor-
mances are better illustrated in Figures 3 and 4, where they can be compared
with respect to the different contamination scenarios and to the choice of the ro-
bust estimator (RLM and RLM-OD). It should be noted that for the M1 model,
the RLM-OD algorithm behaves exactly like the standard RLM, since the output
is not fed back (i.e. connections pathways 1 and 2 are disabled).
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Fig. 3: Performances on the (a) 10-th order problem, (b) Dryer and (c) Exchanger
datasets.
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Fig. 4: Performances on the (a) Tank and (b) Robot arm datasets.

As can be seen in Table 3, the presence of feedback pathways (Models M2 e
M3) decreased the norm of the ESN output layer, which leads to an improvement
in generalization and avoids overfitting. In other words, the feedback pathways
acted as a model regularizer. The M3 model, which feeds the predicted output
back to the readout layer and the reservoir, has the smallest norms and the
corresponding RMSE values are smaller or very close compared to the other
evaluated models.

In Figure 3 we report the results for different contamination scenarios in
which the three models presented similar RMSE values when using the RLM-
type estimation algorithm. In other words, for these datasets, the M2 and M3
models presented similar performance independently of the RLM-type estima-
tion algorithm used. In terms of the norm of the output vector, all models (M1,
M2 and M3) using RLM-like estimation algorithms are practically insensitive
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RLS RLM RLM-OD

Tank
RMSE 0.3553 0.1796 0.1063

Norm 108.46 25.53 8.40

Robot Arm
RMSE 0.2509 0.0997 0.0482

Norm 108.75 46.09 13.14

Table 4: Numerical results for the Tank and Robot Arm datasets achieved by the
M3 model with a 15% contamination scenario.

to the increase in the amount of outliers. As expected, when the models used
the standard RLS algorithm, the norm of the output weight vector increased
considerably with the increase in the amount of outliers.

For the datasets Tank and Robot Arm the superior performance of the M3
model over the other two models is evident, as shown in Figure 4. For these
datasets, the performance of the M3 model using the proposed RLM-OD es-
timation algorithm is consistently superior to that of the M3 model using the
standard RLM algorithm. This is true in terms of smaller RMSE values, but also
in terms of smaller norms for the output weight vector.

To illustrate the importance of the combined use of robust estimation meth-
ods and small norms of the output weight vector in the long-term performance
of the M3 model, we report in Figure 5 typical predicted time series for a single
training/testing run and a scenario with 15% of outlier contamination. The ver-
tical dotted lines indicate the end of training phase and beginning of the iterated
long-term prediction task. The superior performance of the fully recurrent M3
model using the robust estimation algorithms (RLM and RLM-OD) is clear.

These models (M3-RLM and M3-RLM-OD) were both able to learn the un-
derlying dynamics of the system of interest even in the presence of outliers during
the training phase and capable of diminishing the effect of error propagation dur-
ing the testing phase due to the smaller norms of the output weight vector. The
corresponding numerical results for this example are reported in Table 5.

5 Conclusions and Further Work

In this paper, we evaluated the performance of the ESN model for recursive iden-
tification task under outlier-contaminated scenarios. Two outlier-robust variants
of the RLS algorithm were used for estimating the output weight vector, namely,
the RLM algorithm and the proposed RLM-OD algorithm.

It was verified by a comprehensive set of computer experiments using bench-
marking datasets that the combined used of feedback pathways and robust es-
timation algorithms led to regularized recurrent neural network models. Among
the evaluated models, the M3-RLM-OD model consistently presented very promis-
ing results, being able to keep the norm of the output weight vector small and,
hence, reduce the negative influence of outliers in the long term iterated predic-
tion performance of the ESN model.
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Fig. 5: Typical predicted time series for the (a) Tank and (b) Robot Arm datasets
achieved by the M3 model with a 15% contamination scenario.

Currently, we are extending the experiments carried out in this paper to
the online identification of multiple-input, multiple output (MIMO) dynamic
systems.
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