Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70713
Tipo: Artigo de Evento
Título : Competitive and temporal Hebbian learning for production of robot trajectories
Autor : Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
Fecha de publicación : 1998
Editorial : Brazilian Symposium on Neural Networks
Citación : BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6.
Abstract: This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant.
URI : http://www.repositorio.ufc.br/handle/riufc/70713
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1998_eve_gabarreto.pdf116,62 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.