Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70713
Tipo: | Artigo de Evento |
Título: | Competitive and temporal Hebbian learning for production of robot trajectories |
Autor(es): | Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
Data do documento: | 1998 |
Instituição/Editor/Publicador: | Brazilian Symposium on Neural Networks |
Citação: | BARRETO, G. A.; ARAÚJO, A. F. R. Competitive and temporal Hebbian learning for production of robot trajectories. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 5., 1998, Belo Horizonte. Anais... Belo Horizonte: IEEE, 1998. p. 1-6. |
Abstract: | This paper proposes an unsupervised neural algorithm for trajectory production of a 6-DOF robotic arm. The model encodes these trajectories in a single training iteration by using competitive and temporal Hebbian learning rules and operates by producing the current and the next position for the robotic arm. In this paper we will focus on trajectories with at least one common point. These types of trajectories introduce some ambiguities, but even so, the neural algorithm is able to reproduce them accurately and unambiguously due to context units used as part of the input. In addition, the proposed model is shown to be fault-tolerant. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70713 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
1998_eve_gabarreto.pdf | 116,62 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.