Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70706
Tipo: Artigo de Evento
Título : The role of excitatory and inhibitory learning in EXIN networks
Autor : Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
Palabras clave : EXIN networks;Anti-hebbian learning;Competitive learning;Uncertainty;Distributed coding
Fecha de publicación : 1998
Editorial : World Congress on Computational Intelligence
Citación : BARRETO, G. A.; ARAÚJO, A. F. R. The role of excitatory and inhibitory learning in EXIN networks. In: WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, Anchorage. Anais... Anchorage: IEEE, 1998. p. 2378-2383.
Abstract: In this paper we propose modifications for the learning rules of Marshall’s EXIN (excitatory + inhibitory) neural network model in order to decrease its computational complexity and understand the role of the weight updating learning rules in correctly encoding familiar, superimposed and ambiguous input patterns. The MEXIN (Modified EXIN) models introduce mixtures of competitive and Hebbian updating rules. In this case, only the weights of the unit with highest activation are updated. Hence, the MEXIN networks require less computation than the original EXIN model. A number of simulations are carried out with the aim of showing how the models respond to overlapping, superimposed and ambiguous patterns.
URI : http://www.repositorio.ufc.br/handle/riufc/70706
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1998_eve_gabarreto.pdf123,94 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.