Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70700
Tipo: Artigo de Evento
Título : Metaheuristic optimization for automatic clustering of customer-oriented supply chain data
Autor : Mattos, César Lincoln Cavalcante
Barreto, Guilherme de Alencar
Horstkemper, Dennis
Hellingrath, Bernd
Fecha de publicación : 2017
Editorial : International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization
Citación : BARRETO, G. A. et al. Metaheuristic optimization for automatic clustering of customer-oriented supply chain data. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION, 12., 2017, Nancy. Anais... Nancy: IEEE, 2017. p. 1-8.
Abstract: In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.
URI : http://www.repositorio.ufc.br/handle/riufc/70700
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_eve_gabarreto.pdf618,71 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.