Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70700
Tipo: | Artigo de Evento |
Título : | Metaheuristic optimization for automatic clustering of customer-oriented supply chain data |
Autor : | Mattos, César Lincoln Cavalcante Barreto, Guilherme de Alencar Horstkemper, Dennis Hellingrath, Bernd |
Fecha de publicación : | 2017 |
Editorial : | International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization |
Citación : | BARRETO, G. A. et al. Metaheuristic optimization for automatic clustering of customer-oriented supply chain data. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION, 12., 2017, Nancy. Anais... Nancy: IEEE, 2017. p. 1-8. |
Abstract: | In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70700 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2017_eve_gabarreto.pdf | 618,71 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.