Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70697
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Maia, José Everardo Bessa | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.contributor.author | Coelho, André Luis Vasconcelos | - |
dc.date.accessioned | 2023-02-09T16:26:31Z | - |
dc.date.available | 2023-02-09T16:26:31Z | - |
dc.date.issued | 2008 | - |
dc.identifier.citation | MAIA, J. E. B.; BARRETO, G. A.; COELHO, A. L. V. On self-organizing feature map (SOFM) formation by direct optimization through a genetic algorithm. In: INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, 8., 2008, Barcelona. Anais... Barcelona: IEEE, 2008. p. 661-666. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70697 | - |
dc.description.abstract | This paper examines the formation of self-organizing feature maps (SOFM) by the direct optimization of a cost function through a genetic algorithm (GA). The resulting SOFM is expected to produce simultaneously a topologically correct mapping between input and output spaces and a low quantization error. The proposed approach adopts a cost (fitness) function which is a weighted combination of indices that measure these two aspects of the map quality, specifically, the quantization error and the Pearson correlation coefficient between the corresponding distances in input and output spaces. The resulting maps are compared with those generated by the Kohonen’s self-organizing map (SOM) algorithm in terms of the Quantization Error (QE), the Weighted Topological Error (WTE) and the Pearson correlation coefficient (PCC) indices. The experiments show the proposed approach produces better values of the quality indices as well as is more robust to outliers. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Conference on Hybrid Intelligent Systems | pt_BR |
dc.title | On self-organizing feature map (SOFM) formation by direct optimization through a genetic algorithm | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2008_eve_gabarreto.pdf | 185,87 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.