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Abstract

This paper examines the formation of self-organizing
feature maps (SOFM) by the direct optimization of a cost
function through a genetic algorithm (GA). The resulting
SOFM is expected to produce simultaneously a topologi-
cally correct mapping between input and output spaces and
a low quantization error. The proposed approach adopts a
cost (fitness) function which is a weighted combination of
indices that measure these two aspects of the map quality,
specifically, the quantization error and the Pearson correla-
tion coefficient between the corresponding distances in in-
put and output spaces. The resulting maps are compared
with those generated by the Kohonen’s self-organizing map
(SOM) algorithm in terms of the Quantization Error (QE),
the Weighted Topological Error (WTE) and the Pearson cor-
relation coefficient (PCC) indices. The experiments show
the proposed approach produces better values of the qual-
ity indices as well as is more robust to outliers.

1. Introduction

First attempts to build self-organizing neural network
models were strongly motivated by the purpose of simulat-
ing the formation of topographically ordered cortical maps
in the brain [22, 8], with the visual cortex receiving most of
the attention [19]. As expected, most of these computational
models were quite successful in their original biologically
motivated purposes. However, it was Kohonen [12] that pi-
oneered in proposing a computationally efficient algorithm
for the training of such maps, commonly referred to as the
Self-Organizing Map (SOM) algorithm.

Originally conceived as a simplified version of Mals-
burg’s model, the SOM has become one of the most impor-
tant self-organizing neural network models with a number
of important applications in pattern recognition, specially
as a tool for data visualization and dimensionality reduc-
tion [5, 13]. Roughly speaking, the SOM is a vector quanti-
zation algorithm that tries to map distance (proximity) rela-
tions of input data vectors onto an output array of neurons.
In other words, data points that are close to each other in
the original input space are mapped to neurons which are,
in turn, also close to each other in the output array, thereby
resulting in a topology-preserving mapping.

Training the SOM algorithm comprises two basic mech-
anisms. First, a competitive strategy is used for the selection
of a single winning neuron for each input vector; for exam-
ple, the winning neuron is the one whose weight vector is
the closest to the input according to the Euclidean distance.
Second, a cooperative strategy makes use of a neighborhood
function centered on the position of the winning neuron in
the output array to update the weight vectors of the neurons
around the winner. The consequence of the neighborhood-
oriented approach is that the weight vectors of those neu-
rons which are closer to the winning neuron are updated
more strongly in the direction of the current input data.

It turns out that after some suitable number of training
iterations the joint work of SOM’s competitive-cooperative
strategies results in a topology-preserving map as a remark-
ably emergent property. It is worth emphasizing that de-
spite its apparent computational simplicity, the mathemati-
cal analysis of the SOM’s convergence as well as its opti-
mality as a data representation algorithm are problems diffi-
cult to handle [6], still requiring contributions. For example,
after more than two decades of its proposal, the competitive-
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cooperative mechanism responsible for the map formation
in the SOM is not thoroughly understood. There are many
theoretic important advances in this regard, but most of the
knowledge comes from empirical studies [2].

In what concern the theory of self-organizing feature
maps (SOFM) formation, several approaches have al-
ready been proposed, among them we can mention those
based on Markovian models [18], Information Theory [14,
10], Kernel methods [20], Constrained Optimization tech-
niques [23], Expectation-Maximization algorithm [7, 9],
among others. Essentially, these studies view the genera-
tion of topographic maps as an optimization problem. Thus,
the basic idea is to formulate a cost function that takes its
minimum with respect to the parameters to be determined
when the desired state of the mapping is reached. Then the
minimization of the cost function will automatically lead to
the optimal set of parameters.

The problem is that this approach requires a differen-
tiable cost function. However, it has been shown that a cost
function for the original SOM algorithm would be highly
discontinuous and with many local minima [4]. In this case,
a natural alternative would be to develop topographic maps
by means of genetic algorithms (GAs) [3], an approach that
was not fully explored yet.

Bearing this in mind, in the current paper we tackle the
SOFM formation problem by direct optimization through
a genetic algorithm. We show by computer simulations
that, with the proposed fitness function, the direct optimiza-
tion process always leads to topology-preserving mappings,
which also display robustness to outliers.

The remainder of the paper is organized as follows. In
Section 2 we introduce the proposed GA-based approach to
SOFM formation, describing in detail all its components. In
Section 3 we present the obtained results and discuss them
accordingly. The paper is concluded in Section 4.

2. The Proposed Approach

We briefly here describe the SOM algorithm. In short,
the SOM is a competitive learning network with the
neurons geometrically arranged in an output array. Its
number of neurons and the dimension of the output array
must be defined in advance. Usually, the array is one-
or two-dimensional, but three-dimensional cases are easy
to find. Each neuron is associated with a weight vector
representing the centroid of a particular region of the
data space (Voronoi cells). The weight vectors have the
same dimension as the input vectors. This paper uses the
following notation: N is the number of neurons, P is the
input space dimension, L is the number of data samples,
wj is the weight vector of neuron j, wi is the weight vector
of the winning neuron, and x is a given input vector. Once
chosen the number of neurons and the dimension of the

output array, the SOM training consists of the following
steps:

Pseudo-code for the SOM algorithm

1. Initialize (randomly) the weight vectors: wj(0), j =
1, . . . , N .

2. Sample input data vectors x according to a probability
distribution p(x).

3. Choose the winning neuron i(x) at iteration n, using
the minimum Euclidean distance criterion:

i(x) = argmin
∀j
‖x(n)−wj(n)‖ , j = 1, . . . , N.

4. Update the weight vectors of the neurons as follows:

wj(n + 1) = wj(n) + η(n)hi,j(n) [x(n)−wj(n)] ,

where η(n) is the learning-rate parameter and h i,j(n)
is the neighborhood function centered around the po-
sition of the winning neuron i(x) in the output array;
both η(n) and the width of hi,j(n) decay in time for
the sake of convergence.

5. Repeat Steps 2-5 until no significant changes in the
map are observed.

As pointed out in the introduction, our goal is to intro-
duce a GA-based approach to SOFM formation and com-
pare it with the standard SOM in terms of quality of the
generated map. Genetic algorithms are stochastic optimiza-
tion methods grounded on concepts from evolutionary biol-
ogy and population genetics, that is, on the neo-Darwinian
theory of evolution. Since these methods are not based
on derivatives of an objective function, they are suitable to
deal with discontinuous cost functions and less prone to get
trapped on local minima than the gradient based methods.

The issue of map formation using GA has been ad-
dressed in some studies [1, 17, 16, 15]. Some of these works
are not explicitly concerned with the map formation issue,
but rather in using GA to evolve the original SOM with the
goal of finding optimal network topology (number of neu-
rons and array dimension) as well as optimal training pa-
rameters, such as the learning rate scheduling and anneal-
ing of the neighborhood width. The work of Polani [17] is
representative of this group.

In [11] map formation is achieved via a two-step proce-
dure. In the first step, they apply the K-means algorithm for
cluster formation, while in the second step, with the weight
vectors frozen, they use GA to build a topologically ordered
map. Thus, according to this approach weight adaptation is
separated from weight ordering.
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To the best of our knowledge, Curry and Morgan [1] pi-
oneered in proposing a single-step GA-based direct opti-
mization approach for SOFM formation, tuning the weights
simultaneously with the map ordering. The current paper
follows Curry and Morgan’s approach, but differs signif-
icantly in a number of points, among them the type of fit-
ness function, the genetic operations used, and in the perfor-
mance parameters used for comparison. Furthermore, we
show that the proposed approach is robust to outliers while
theirs seems not to be.

2.1 Basics of Genetic Algorithms

Genetic algorithms are a family of stochastic search
algorithms that imitates Natural Selection (survival of the
fittest) in the search for the best solution [3]. They are
based on the application of genetic operations (selection,
recombination and mutation), which mimic well-known
evolutionary phenomena. In this approach one has a
population of candidate solutions, coded as chromosomes,
and a fitness function that measures the adaptability of the
individuals to the environment, that is, the quality of the
solutions. For each iteration (generation) the population
individuals evolve using genetic operations and some
strategy, usually based on the fitness function, that defines
which individuals will survive to the next generation.
Generally, with the aim to preserve diversity, the strategy is
not limited to the selection of the most fittest individuals,
although this strategy is adopted frequently. The pseu-
docode description of a typical GA is given below [3].

Pseudo-code for the GA procedure

1. Generate the initial population of individuals.

2. Evaluate the fitness of each individual.

3. Repeat

• Select probabilistically the individuals to repro-
duce (with a bias to those best-ranked).

• Breed new offspring through crossover and mu-
tation (genetic operations).

• Evaluate the fitness values of the offspring.

• Replace worst ranked part of population with off-
spring.

4. Until termination

The most significant advantages of using evolutionary al-
gorithms lie in the gain of flexibility and adaptability to the
task at hand, in combination with robust performance and
global search characteristics. The key to successful imple-
mentation of GAs most often lies in the choice of a genetic

representation that mirrors the problem well and the use of
‘intelligent’ genetic operators which again have a natural
affinity to the problem of interest [3]. In the next sections
we describe the components of the proposed GA-based ap-
proach to SOFM formation.

2.2 The Proposed Fitness Function

To measure the quality of the formed map, we use the
Quantization Error (QE) and the Topographic Error (TE)
indices, defined respectively as

QE =
1
L

L∑
l=1

‖wi − xl‖ , (1)

and

TE =
1
L

L∑
l=1

Ψ (xl,w1, ...,wN ) , (2)

where Ψ (xl,w1, ...,wN ) ∈ [0, 1].
The QE index assesses how good is the SOFM as a vec-

tor quantizer, whereas the TE index captures the propor-
tion of data points for which the closest and second-closest
weight vectors are not adjacent on the map grid, which is
determined by Ψ. The relative importance of these two in-
dices depends on the application and it is very difficult to
manage using Kohonen’s SOM algorithm. It would be de-
sirable to have some degree of control of these indices dur-
ing the formation of the topology-conserving maps, so that
the user can choose the most important one for a given ap-
plication. The GA-based approach provides such a flexibil-
ity by the choice of a suitable fitness function.

In principle, any of the above indices of map quality, or
their combination, could be used as a fitness function for di-
rect optimization by GA, in view that the fitness function is
only used in the stages of mating selection and environmen-
tal selection [3]. On the other hand, the fitness function has
a significant impact on the map quality (QE and TE) and on
the computational demands of the genetic approach.

In this context, Kirk and Zurada [11] used the Weighted
Topological Error (WTE) index, defined as

WTE =
1
L

L∑
l=1

|i1(l)− i2(l)| − 1
N − 1

, (3)

where i1(l) and i2(l) are the indices of the neurons whose
weight vectors are, respectively, the first and second clos-
est ones to the l-th input vector. They compared the WTE
values obtained by their GA-based approach with those ob-
tained by Kohonen’s SOM, showing clear advantages for
the GA. However, their results were achieved solely for one-
dimensional SOMs.
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Table 1. Average values of QE, WTE and PCC
(data set 1, α = β = 1)

Method - Grid size QE WTE PCC

GA - 1× 9 0.154 0.021 0.867
SOM - 1× 9 0.141 0.034 0.823
GA - 3× 3 0.086 0.055 0.891
SOM - 3× 3 0.085 0.044 0.866
GA - 1× 25 0.083 0.062 0.860
SOM - 1× 25 0.081 0.054 0.821
GA - 5× 5 0.084 0.035 0.961
SOM - 5× 5 0.081 0.030 0.911

Conversely, Curry and Morgan [1] used as fitness func-
tion the locally weighted distortion index (LWDI):

LWDI = E

⎡
⎣∑

∀j

hij ‖x−wj‖
⎤
⎦ , (4)

where E[·] denotes the expectation operator taken over the
whole set of input vectors. A comparison between their
GA-based approach and Kohonen’s SOM in terms of the
obtained LWDI values favored the former.

In this paper we show that a fitness function formed by
the simple combination of the Quantization error (QE) and
the Pearson correlation coefficient (PCC) is as good as the
WTE and LWDI for the purposes of SOFM formation. The
proposed fitness function is given by

Fitness(W̃) = α · PCC(W̃)− β ·QE(W̃), (5)

where W̃ denotes the whole set of weight vectors, and
the parameters α, β ∈ [0, 10] weigh the relative impor-
tance of the indices with respect to each other. The PCC
index is computed as the cross-correlation between pairs
of distances [d(rm, rn) , d (wm,wn)] , where (rm, rn) are
the coordinates of pairs of neurons in the output array and
(wm,wn) are the corresponding pairs of weight vectors.

It is worth noting that PCC is an index of the type the
larger, the better, while QE is of the type the lesser, the bet-
ter. The direct optimization (maximization) of the fitness
function shown in Eq. (5) via GA is the main contribution
of this paper. The proposed approach is compared with the
Kohonen’s SOM in terms of the QE, WTE, and PCC val-
ues produced for a given formed map. The robustness to
outliers of both approaches is also evaluated.

3. Computer Simulations

In our GA implementation, the individuals are coded as
real numbers in a matrix with N rows and P columns rep-

Table 2. Average values of QE, WTE and PCC
(data set 2, α = β = 1)

Method - Grid size QE WTE PCC

GA - 1× 9 0.142 0.037 0.793
SOM - 1× 9 0.137 0.077 0.731
GA - 3× 3 0.089 0.050 0.906
SOM - 3× 3 0.091 0.044 0.862
GA - 1× 25 0.085 0.057 0.890
SOM - 1× 25 0.081 0.044 0.871
GA - 5× 5 0.078 0.025 0.965
SOM - 5× 5 0.077 0.030 0.921

resenting the N weight vectors of the neurons in the net-
work. Single-point crossover is adopted whereas mutation
is implemented by adding a zero-mean Gaussian random
variable to the current value of a gene. Each individual of
the current population (irrespective of its fitness value) gen-
erates a fixed number of descendants, which are evaluated
and the most fittest are selected for the next generation. In
this paper, we decided for a simple deterministic selection
method (both for reproduction and population replacement)
to reduce simulation time. Indeed, this choice, together with
the high rates of mutation used sometimes, makes our GA
to much resemble an Evolution Strategy [3]. Two artificial
data distributions were used in the simulations: (i) a uni-
form distribution on the unit square (data set 1), and (ii) a
uniform distribution on the unit square with outliers (data
set 2). A total of 1,000 samples were used for input data,
and a population of 40 individuals was available in each
generation. The tests were performed in MATLAB with the
support of SOM toolbox [21].

A series of runs of the GA used mutation rates of 0.01,
0.05, 0.10, 0.20, and 0.50. Following the methodology pro-
posed in [1], initialization was determined by a seed value
for the random number generator so that results could be
checked subsequently. The tests were performed with the
GA algorithm and the Kohonen’s SOM for the following
network topologies: 1 × 9, 3 × 3, 1 × 16, 4 × 4, 1 × 25,
and 5× 5. The parameter α of the fitness function assumed
the values of 1, 2, 5, and 10, and the simulations run for
500, 1,000, 2,000, and 10,000 generations. Typically, the
GA converges after 500 up to 2,000 generations. The mean
values averaged over 20 runs for the indices QE, WTE, and
PCC are shown in Tables 1 and 2 for the two simulated dis-
tributions. (Due to space limitation, the standard deviation
values for the GA were omitted, although we can assert that
they were not much high and vary in magnitude across the
indices.) Moreover, some variability is found in the runs for
all six network topologies and for the two distributions. As
expected, there is a predominance of favorable results to the
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Figure 1. Typical 5x5 map formed by the GA-
based approach for data set 1 (α = β = 1).

proposed GA-based approach for all indices.
A typical SOFM built by the proposed GA-based ap-

proach for the data set 1 is shown in Figure 1, where one
can see a topologically correct map. Interesting results are
obtained for the data set 2, which contain outliers. Figure 2
shows a typical SOFM formed by the proposed GA-based
approach. For the sake of comparison, Figure 3 shows a
typical SOFM formed by the Kohonen approach.

By comparing these two figures, one can easily note that
the map formed by our GA did not assign a weight vector
to the small clouds of points (outliers) in the upper right
corner of the figures, while Kohonen’s SOM algorithm al-
ways assigns one weight vector to this cloud. An immediate
consequence of this behavior of Kohonen’s algorithm is that
the final map is considerably distorted. Hence, one can con-
clude that the proposed approach is relatively more robust
to outliers than the Kohonen’s algorithm.

As a final remark, we would like to point out that, if re-
quired by the user, the proposed GA-based approach can do
assign a weight vector to the cloud of outliers. It can be eas-
ily done by giving more importance to the QE index than to
the PPC index (i.e. β � α) in the fitness function shown
in (5). Figure 4 shows a map at an intermediate generation
being evolved by the proposed algorithm with α = 1 and
β = 4, where we clearly see the displacement of a weight
vector towards the cloud of outliers. This flexibility is not
provided by the standard SOM algorithm.

4 Conclusions

This article introduced a novel fitness function for fea-
ture map formation using genetic algorithms. The main
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Figure 2. Typical 5x5 map formed by the GA-
based approach for data set 2 (α = β = 1).

motivation was to obtain better quality maps for the approx-
imation of data distribution in the input space even in the
presence of outliers. Maps of different sizes and dimen-
sions obtained by the proposed procedure were compared
with those obtained by standard Kohonen’s SOM algorithm
using three quality criteria, namely: the Quantization Error
(QE), the Weighted Topological Error (WTE), and the Pear-
son correlation coefficient (PCC). The experiments show
better values of these indices for the map obtained by the
proposed GA-based direct optimization.

In continuity to this work, some further investigation is
currently underway. First, we are evaluating the feasibil-
ity of defining a neighborhood kernel for the mutation op-
eration. That is, every time a single gene is randomly se-
lected for being mutated, its immediate neighbors are also
mutated. It is expected that this kernel-based mutation ac-
celerates the weight vector ordering and hence the whole
map formation algorithm. Second, we are testing the ef-
fectiveness of different selection and crossover operators.
Finally, as the fitness function is a weighted linear combi-
nation of the QE with a neighboring preservation measure,
we are testing a time-varying procedure, similar to that of
the SOM algorithm, which adaptively changes the parame-
ters α and β in (5), starting with the QE heavily weighted
with respect to the PCC index (or vice versa).
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Figure 3. Typical 5x5 map formed by the Ko-
honen’s algorithm for data set 2.
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