Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70670
Tipo: | Artigo de Evento |
Título : | Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor |
Autor : | Coelho, David Nascimento Barreto, Guilherme de Alencar Medeiros, Cláudio Marques de Sá Santos, José Daniel de Alencar |
Palabras clave : | SVM;LSSVM;MLP;ELM;Fault detection;Three-phase induction motor |
Fecha de publicación : | 2014 |
Editorial : | Symposium on Computational Intelligence for Engineering Solutions |
Citación : | BARRETO, G. A. et al. Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor. SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR ENGINEERING SOLUTIONS, 2014, Orlando. Anais... Orlando: IEEE, 2014. p. 1-7. |
Abstract: | This paper aims at the detection of short-circuit incipient fault condition in a three-phase squirrel-cage induction motor fed by a sinusoidal PWM converter. In order to detect this fault, different operation conditions are applied to an induction motor, and each sample of the real data set is taken from the line currents of the PWM converter aforementioned. For feature extraction, the Motor Current Signature Analysis (MCSA) is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Multi-layer Perceptron (MLP), Extreme Learning Machine (ELM), Support-Vector Machine (SVM), Least-Squares Support-Vector Machine (LSSVM), and the Minimal Learning Machine (MLM). These classifiers are tested and the results are compared with other works with the same data set. In near future, an embedded system can be equipped with these algorithms. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70670 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2014_eve_gabarreto.pdf | 914,18 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.