Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70670
Tipo: Artigo de Evento
Título : Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor
Autor : Coelho, David Nascimento
Barreto, Guilherme de Alencar
Medeiros, Cláudio Marques de Sá
Santos, José Daniel de Alencar
Palabras clave : SVM;LSSVM;MLP;ELM;Fault detection;Three-phase induction motor
Fecha de publicación : 2014
Editorial : Symposium on Computational Intelligence for Engineering Solutions
Citación : BARRETO, G. A. et al. Performance comparison of classifiers in the detection of short circuit incipient fault in a three-phase induction motor. SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE FOR ENGINEERING SOLUTIONS, 2014, Orlando. Anais... Orlando: IEEE, 2014. p. 1-7.
Abstract: This paper aims at the detection of short-circuit incipient fault condition in a three-phase squirrel-cage induction motor fed by a sinusoidal PWM converter. In order to detect this fault, different operation conditions are applied to an induction motor, and each sample of the real data set is taken from the line currents of the PWM converter aforementioned. For feature extraction, the Motor Current Signature Analysis (MCSA) is used. The detection of this fault is treated as a classification problem, therefore different supervised algorithms of machine learning are used so as to solve it: Multi-layer Perceptron (MLP), Extreme Learning Machine (ELM), Support-Vector Machine (SVM), Least-Squares Support-Vector Machine (LSSVM), and the Minimal Learning Machine (MLM). These classifiers are tested and the results are compared with other works with the same data set. In near future, an embedded system can be equipped with these algorithms.
URI : http://www.repositorio.ufc.br/handle/riufc/70670
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2014_eve_gabarreto.pdf914,18 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.