Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70632
Tipo: | Artigo de Evento |
Título : | Rotation-invariant image description from independent component analysis for classification purposes |
Autor : | Silva, Rodrigo Dalvit Carvalho da Thé, George André Pereira Medeiros, Fátima Nelsizeuma Sombra de |
Palabras clave : | Independent component analysis;Invariant rotation;Pattern recognition |
Fecha de publicación : | 2015 |
Editorial : | International Conference on Informatics in Control, Automation and Robotics |
Citación : | SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7. |
Abstract: | Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70632 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2015_eve_gapthe.pdf | 545,29 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.