Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70632
Tipo: Artigo de Evento
Título : Rotation-invariant image description from independent component analysis for classification purposes
Autor : Silva, Rodrigo Dalvit Carvalho da
Thé, George André Pereira
Medeiros, Fátima Nelsizeuma Sombra de
Palabras clave : Independent component analysis;Invariant rotation;Pattern recognition
Fecha de publicación : 2015
Editorial : International Conference on Informatics in Control, Automation and Robotics
Citación : SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.
Abstract: Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.
URI : http://www.repositorio.ufc.br/handle/riufc/70632
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2015_eve_gapthe.pdf545,29 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.