Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/70526
Type: | TCC |
Title: | Desenvolvimento de api para aprendizado profundo de imagens de pequenos ruminantes |
Authors: | Souza Filho, José Lopes de |
Advisor: | Paula Júnior, Iális Cavalcante de |
Keywords: | FAMACHA;Ovinos;Redes neurais convolucionais;Implantação;Aprendizagem de Máquina |
Issue Date: | 2022 |
Citation: | SOUZA FILHO, J. L. Desenvolvimento de API para aprendizado profundo de imagens de pequenos ruminantes. 2022. 52 f. Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Sobral,2022. |
Abstract in Brazilian Portuguese: | A criação de ovinos e caprinos sempre foi de fundamental importância para a região nordeste do Brasil, sendo parte fundamental da economia local. Tais rebanhos, quando criados em confinamento, podem apresentar diversas enfermidades e parasitoses, tais como o Haemonchus contortus, que causa anemia e perdas substanciais aos criadores. Existem métodos para controle de anemia em ovinos e caprinos, sendo um deles o método FAMACHA, cujo objetivo é identificar clinicamente animais resistentes, resilientes e sensíveis às infecções parasitárias, otimizando o tratamento de forma seletiva em situações reais no campo, sem a necessidade de recursos laboratoriais. (MOLENTO et al., 2004). O estudo contido nesse documento se propôs a criar um modelo de classificação de imagens da mucosa de animais em anêmicos e não anêmicos utilizando redes neurais convolucionais assim como realizar a implantação desse modelo no ambiente de produção por meio de frameworks Python. |
Abstract: | Sheep and goat farming has always been very important to Brazil’s northeastern region, being a key part for the local economy. These livestocks, when raised in confinement, can present many sicknesses and parasitosis, like Haemonchus contortus, that may cause anemia and important losses to the local farmers. There are methods to control anemia in sheep and goat livestocks, one of them is FAMACHA© method, which aims to clinically identify resistant animals, resilient and sensitive to parasitic infections, optimizing the treatment selectively in real situations at the countryside, without the need of using laboratory resources. (MOLENTO et al., 2004). The study of this document aims to create a machine learning model which classifies animal’s mucosa as anemic or non-anemic using convolutional neural networks as well as deploying this model in the production environment through Python frameworks. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70526 |
Appears in Collections: | ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022_tcc_jlsouzafilho.pdf | SOUZA FILHO, J. L. Desenvolvimento de API para aprendizado profundo de imagens de pequenos ruminantes. 2022. 52 f. Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Sobral,2022. | 3,3 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.