Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/70210
Type: TCC
Title: Obtenção de biolubrificantes derivados do ácido ricinoleico e álcool isoamílico via processo de epoxidação
Authors: Ventura, Pedro Ramos Nogueira
Advisor: Luna, Francisco Murilo Tavares de
Keywords: Biolubrificantes;Ácido Ricinoleico;Epoxidação
Issue Date: 2022
Citation: VENTURA, Pedro Ramos Nogueira. Obtenção de biolubrificantes derivados do ácido ricinoleico e álcool isoamílico via processo de epoxidação. 2022. 51 f. Monografia (Graduação em Engenharia Química) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2022.
Abstract in Brazilian Portuguese: Os produtos de origem fóssil vêm sendo substituído a cada dia por questões ambientais que eles carregam junto consigo, além de também haver a questão da finidade dos recursos, uma vez que, por mais que leve tempo, os recursos minerais esgotar-se-ão, obrigando a busca por novas fontes e produtos que desempenhem a mesma função. Nesse aspecto, os biolubrificantes surgem como uma alternativa aos lubrificantes tradicionais manufaturados a partir do petróleo graças à sua biodegradabilidade em uma faixa reduzida de tempo, podendo ser obtidos a partir de matérias-primas renováveis. Desse modo, será explorado o potencial de ésteres do óleo da mamona como biolubrificantes, esperando contribuir na área da ciência sustentável, com recursos renováveis e de baixos impactos ambientais. A partir do principal ácido graxo do óleo de mamona, o ácido ricinoleico, é realizada sua esterificação utilizando o álcool isoamílico, com o ácido ptoluenossulfônico (PTSA) como catalisador da reação, a 90 °C por 6 horas sob fluxo de N2, obtendo-se conversão de 96 % do ácido em éster. Na sequência, o éster gerado na etapa anterior passou pelo processo de epoxidação, onde as insaturações presentes em sua cadeia carbônica seriam convertidas em anéis oxiranos a partir da reação com ácido fórmico e peróxido de hidrogênio, formando in situ o perácido fórmico, com tolueno como fase orgânica da reação, com tempo de reação de 24 horas a temperatura ambiente. Concluída a reação, o produto foi analisado via RMN ¹H, onde observou-se uma total eliminação das ligações duplas de carbono das moléculas, com mais de 97 % sendo convertidas em anéis epóxi. Por fim, para produção do biolubrificante, os anéis oxiranos foram abertos na presença de PTSA utilizando-se o álcool isoamílico variando-se a carga de catalisador e temperatura do meio. Finalizada a parte reacional, foi feita a caracterização do biolubrificante, alcançando excelentes níveis em suas propriedades, além de inibir fraquezas iniciais do óleo vegetal, que são a perda da qualidade de suas propriedades quando submetido a temperaturas extremas, que foi notado graças ao incremento do índice de viscosidade do óleo e diminuição do seu ponto de fluidez, além de melhorar a estabilidade à oxidação, permitindo-o adequar-se para lubrificação de diversos sistemas industriais e automobilísticos.
Abstract: Fossil origin products are being replaced with the passing of the days due to the environmental issues that they carry with them, as well as the matter of the finiteness of resources, since, even though it’ll take a while, mineral resources will be over, forcing the search for new sources and products that perform the same function. In this aspect, biolubricants emerge as an alternative to traditional lubricants manufactured from petroleum thanks to their biodegradability in a reduced time span, and they can be obtained from renewable sources. With that in mind, the potential of castor oil esters as biolubricants will be explored, hoping to contribute in the area of sustainable science, with renewable resources and low environmental impacts. From the main fatty acid of castor oil, the ricinoleic acid, its esterification is carried out using isoamyl alcohol, with p-toluenesulfonic acid (PTSA) as reaction catalyst, at 90 °C for 6 hours under N2 flow, obtaining 96% conversion of the acid into ester. Subsequently, the ester generated in the previous step went through the epoxidation process, where the unsaturations present in its carbonic chain would be converted into oxiran rings from the reaction with formic acid and hydrogen peroxide, forming in situ the formic peracid, with toluene as the organic phase of the reaction, with a reaction time of 24 hours at room temperature. After the reaction, the product was analyzed by ¹H NMR, where a total elimination of carbon double bonds from the molecules was observed, with more than 97% being converted into epoxy rings. Finally, for the production of biolubricant, the oxirane rings were opened in the presence of PTSA using isoamyl alcohol, varying the catalyst load and temperature of the reaction. Once it was finished, the characterization of the biolubricant was carried out, reaching excellent levels in its properties, in addition to inhibiting initial weaknesses of the vegetable oil, which are the loss of the quality of its properties when subjected to extreme temperatures, which was noticed thanks to the increase in oil viscosity index and decrease of its pour point, in addition to improving oxidation stability, allowing it to be suitable for the lubrication of various industrial and automotive systems.
URI: http://www.repositorio.ufc.br/handle/riufc/70210
Appears in Collections:ENGENHARIA QUÍMICA - Monografias

Files in This Item:
File Description SizeFormat 
2022_tcc_prnventura.pdf1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.