Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69737
Tipo: Artigo de Periódico
Título : A projection pricing model for non-Gaussian financial returns
Autor : Rodrigues, Ana Flávia Paiva
Cavalcante, Charles Casimiro
Crisóstomo, Vicente Lima
Palabras clave : CAPM;Optimal portfolio;Information geometry;Mean–Divergence model;Modelo de precificação de ativos;Investimentos;Geometria da informação
Fecha de publicación : 2019
Editorial : Physica A: Statistical Mechanics and its Applications
Citación : CAVALCANTE, C. C.; RODRIGUES, A. F. P.; CRISÓSTOMO, V. L. A projection pricing model for non-Gaussian financial returns. Physica A: Statistical Mechanics and its Applications, [s.l.], v. 534, 2019. DOI: https://doi.org/10.1016/j.physa.2019.122181
Abstract: Stephen LeRoy, Jan Werner and David Luenberger have developed a geometric approach to the capital asset pricing model (CAPM) in terms of projections in a Hilbert space onto a mean–variance efficient frontier. Using this projection method, they were able to elegantly deduce a geometric interpretation of CAPM and factor asset pricing models. In this paper we extend their geometric methods to non-Euclidean divergence geometries. This extension has relevant consequences. First, it permits to deal with higher order moments of the probability distributions since general statistical divergences could encode global information about these distributions as is the case of the entropy. Secondly, orthogonal Euclidean projections and the corresponding least squares problem give place to Riemannian projections onto a possibly curved efficient frontier. Finally, our method is flexible enough to deal with huge families of probability distributions. In particular, there is no need to assume normality of the returns of the financial assets.
URI : http://www.repositorio.ufc.br/handle/riufc/69737
ISSN : 0378-4371
Aparece en las colecciones: DETE - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2019_art_cccavalcante.pdf393,21 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.