Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69590
Tipo: Artigo de Evento
Título: An ensemble learning approach for the classification of remote sensing scenes based on covariance pooling of CNN features
Autor(es): Akodad, Sara
Vilfroy, Solène
Bombrun, Lionel
Cavalcante, Charles Casimiro
Berthoumieu, Yannick
Palavras-chave: Covariance pooling;Pretrained CNN models
Data do documento: 2019
Instituição/Editor/Publicador: European Signal Processing Conference
Citação: CAVALCANTE, C. C. et al. An ensemble learning approach for the classification of remote sensing scenes based on covariance pooling of CNN features. In: EUROPEAN SIGNAL PROCESSING CONFERENCE, 27., 2017, Corunha. Anais... Corunha: IEEE, 2019. p. 1-5.
Abstract: This paper aims at presenting a novel ensemble learning approach based on the concept of covariance pooling of CNN features issued from a pretrained model. Starting from a supervised classification algorithm, named multilayer stacked covariance pooling (MSCP), which exploits simultaneously second order statistics and deep learning features, we propose an alter- native strategy which employs an ensemble learning approach among the stacked convolutional feature maps. The aggregation of multiple learning algorithm decisions, produced by different stacked subsets, permits to obtain a better predictive classification performance. An application for the classification of large scale remote sensing images is next proposed. The experimental results, conducted on two challenging datasets, namely UC Merced and AID datasets, improve the classification accuracy while maintaining a low computation time. This confirms, besides the interest of exploiting second order statistics, the benefit of adopting an ensemble learning approach.
URI: http://www.repositorio.ufc.br/handle/riufc/69590
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_cccavalcante.pdf1,57 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.