Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69590
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorAkodad, Sara-
dc.contributor.authorVilfroy, Solène-
dc.contributor.authorBombrun, Lionel-
dc.contributor.authorCavalcante, Charles Casimiro-
dc.contributor.authorBerthoumieu, Yannick-
dc.date.accessioned2022-11-29T13:36:18Z-
dc.date.available2022-11-29T13:36:18Z-
dc.date.issued2019-
dc.identifier.citationCAVALCANTE, C. C. et al. An ensemble learning approach for the classification of remote sensing scenes based on covariance pooling of CNN features. In: EUROPEAN SIGNAL PROCESSING CONFERENCE, 27., 2017, Corunha. Anais... Corunha: IEEE, 2019. p. 1-5.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/69590-
dc.description.abstractThis paper aims at presenting a novel ensemble learning approach based on the concept of covariance pooling of CNN features issued from a pretrained model. Starting from a supervised classification algorithm, named multilayer stacked covariance pooling (MSCP), which exploits simultaneously second order statistics and deep learning features, we propose an alter- native strategy which employs an ensemble learning approach among the stacked convolutional feature maps. The aggregation of multiple learning algorithm decisions, produced by different stacked subsets, permits to obtain a better predictive classification performance. An application for the classification of large scale remote sensing images is next proposed. The experimental results, conducted on two challenging datasets, namely UC Merced and AID datasets, improve the classification accuracy while maintaining a low computation time. This confirms, besides the interest of exploiting second order statistics, the benefit of adopting an ensemble learning approach.pt_BR
dc.language.isoenpt_BR
dc.publisherEuropean Signal Processing Conferencept_BR
dc.subjectCovariance poolingpt_BR
dc.subjectPretrained CNN modelspt_BR
dc.titleAn ensemble learning approach for the classification of remote sensing scenes based on covariance pooling of CNN featurespt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_eve_cccavalcante.pdf1,57 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.