Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/69589
Tipo: Artigo de Evento
Título : A neural predictor for blind equalization of digital communication systems: is it plausible?
Autor : Cavalcante, Charles Casimiro
Montalvao Filho, Jugurta Rosa
Dorizzi, Bernadette
Mota, João César Moura
Fecha de publicación : 2000
Editorial : Signal Processing Society Workshop
Citación : CAVALCANTE, C. C. et al. A neural predictor for blind equalization of digital communication systems: is it plausible? In: SIGNAL PROCESSING SOCIETY WORKSHOP, 2000, Sydney. Anais... Sydney: IEEE, 2000. p. 736-745.
Abstract: In digital channel equalization, self-learning techniques are used in the cases where a training period is not available. Considering the transmitted sequence as composed of independent random variables, the equalization task can be done by means of prediction. In this work we propose artificial neural networks (ANN), instead of a linear prediction device, in order to obtain a better performance and analyse its performance and applicability. Linear and nonlinear prediction concepts are revisited and a new self-organized algorithm is proposed to update the first layer in the nonlinear predictor whose aim is to avoid local minimum points in the applied cost function. The second layer is updated by using a classical supervised algorithm based on prediction error. Simulation results are presented which illustrate the performance of this technique.
URI : http://www.repositorio.ufc.br/handle/riufc/69589
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2000_eve_cccavalcante.pdf484,05 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.