Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/69517
Tipo: Artigo de Evento
Título: Joint data and connection topology recovery in collaborative wireless sensor networks
Autor(es): Almeida, André Lima Férrer de
Kibangou, Alain
Miron, Sebastian
Araújo, Daniel Costa
Palavras-chave: Blind estimation;Wireless sensor networks;Tensor modeling;PARALIND
Data do documento: 2013
Instituição/Editor/Publicador: International Conference on Acoustics, Speech and Signal Processing
Citação: ALMEIDA, A. L. F. et al. Joint data and connection topology recovery in collaborative wireless sensor networks. In: INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, 2013, Vancouver. Anais... Vancouver: IEEE, 2013. p. 5303-5307.
Abstract: This work considers a collaborative wireless sensor network where nodes locally exchange coded informative data before transmitting the combined data towards a remote fusion center equipped with an antenna array. For this communication scenario, a new blind estimation algorithm is developed for jointly recovering network transmitted data and connection topology at the fusion center. The proposed algorithm is based on a two-stage approach. The first stage is concerned with the estimation of the channel gains linking the nodes to the fusion center antennas. The second stage performs a joint estimation of network data and connection topology matrices by exploiting a constrained (PARALIND) tensor model for the collected data at the fusion center. Illustrative simulation results evaluate the performance of the proposed algorithm for some system configurations and network topologies.
URI: http://www.repositorio.ufc.br/handle/riufc/69517
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_eve_alfalmeida.pdf167,79 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.