Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/68463
Tipo: | Dissertação |
Título : | Hipersuperfícies de curvatura média constante em espaços produto do tipo Warped |
Título en inglés: | Hypersurfaces of constant mean curvature in Warped-type product spaces |
Autor : | Silva, Davi Lustosa da |
Tutor: | Colares, Antonio Gervásio |
Palabras clave : | Curvatura média;Espaços produto warped;Folheação totalmente umbílica;Princípio do máximo;Mean curvature;Warped product spaces;Totally umbilical foliation;Maximum principle |
Fecha de publicación : | 28-jul-2010 |
Citación : | SILVA, Davi Lustosa da. Hipersuperfícies de curvatura média constante em espaços produto do tipo Warped. 2010. 60 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2010. |
Resumen en portugués brasileño: | Neste trabalho estudaremos hipersuperfícies de curvatura média constante imersas em espaços produto do tipo warped da forma Mn+1 = R × f Pn , onde Pn é uma variedade riemanniana completa. Em particular, nosso estudo inclui o de hipersuperfícies de curvatura média constante em espaços ambiente produto. Nosso estudo também inclui hipersuperfícies de curvatura média constante nos chamados espaços pseudohiperbólicos. Vamos apresentar condições que nos permitam concluir quando tal hipersuperfície é uma folha Pt = {t} × Pn da folheação t ∈ R 7−→ Pt totalmente umbílica de M por meio de hipersuperfícies completas. Se a hipersuperfície for compacta, mostraremos que a imersão deve ser uma folha Pt, o que generaliza alguns resultados devidos a Montiel em [21]. Também estenderemos um resultado devido a Guan e Spruck em [7] do espaço ambiente hiperbólico Hn+1 à situação geral de produtos warped. Essa extensão nos permite dar uma versão um pouco mais geral de um resultado de Montiel em [21], e obter estimativas de altura para hipersuperfícies compactas de curvatura média constante com fronteira em uma folha. |
Abstract: | In this work we will study hypersurfaces of constant mean curvature immersed in warped product spaces of the form Mn+1 = R × f Pn, where Pn is a complete Riemannian manifold. In particulary, our study includes that of constant mean curvature hypersurfaces in product ambient spaces. It also includes constant mean curvature hypersurfaces in the so called pseudohyperbolic spaces. We will present conditions that allow us to conclude when such a hypersurface is a leaf Pt = {t} × Pn of the foliation t ∈ R 7−→ Pt fully umbilic of M through complete hypersurfaces. If the hypersurface is compact, we show that the immersion must be a leaf Pt , which generalizes some results due to Montiel into [21]. We will also extend a result due to Guan and Spruck on [7] from the hyperbolic ambient space Hn+1 to the general situation of warped products. This extension allows us to give a slightly more general version of a result by Montiel in [21], and to derive height estimates for compact constant mean curvature hypersurfaces with boundary in a leaf. |
URI : | http://www.repositorio.ufc.br/handle/riufc/68463 |
Aparece en las colecciones: | DMAT - Dissertações defendidas na UFC |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2010_dis_dlsilva.pdf | dissertaçao davi lustosa | 538,52 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.