Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/68292
Tipo: Artigo de Periódico
Título: Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach
Título(s) alternativo(s): Ranqueamentos de sistemas de produtos baseado na avaliação da sustentabilidade do ciclo de vida: tomada de decisão estocástica baseada em múltiplos critérios
Autor(es): Carmo, Breno Barros Telles do
Margni, Manuele
Baptiste, Pierre
Palavras-chave: Life cycle sustainability assessment;Multiple criteria decision analysis;Uncertainty;Decision - Making
Data do documento: 2020
Instituição/Editor/Publicador: Revista de Administração da UFSM
Citação: CARMO, B. B. T.; MARGNI, M.; BAPTISTE, P. Ranking product systems based on uncertain life cycle sustainability assessment: a stochastic multiple criteria decision analysis approach. Revista de Administração da UFSM, vol. 13, n. 4, p. 850-874, out./dez. 2020. DOI: 10.5902/1983465955294
Abstract: Purpose – Life cycle sustainability assessment (LCSA) provides useful and comprehensive information on product system performance. However, it poses several challenges for decision-making process due to (i) multidimensional indicators, (ii) conflicting objectives and (iii) uncertainty associated with the performance assessment. This research proposes an approach able to account uncertain life cycle sustainability performances through multiple criteria decision analysis (MCDA) process to support decision-making. Design/methodology/approach – Our method is structured in three phases: i) assessing the uncertainty of LCSA performances, ii) propagating LCSA uncertainty into MCDA methods and iii) interpreting the stochastic results. The approach is applied on an illustrative case study, ranking four alternatives to biodiesel supply. Findings –The recommendation generated by this approach provides an information about the confidence the decision maker can have in a given result (ranking of solutions) under the form of a probability, providing a better knowledge of the risk (in this case due to the uncertainty of the preferred solution). As such, stochastic results, if appropriately interpreted, provide a measure of the robustness of the rankings generated by MCDA methods, overcoming the limitation of the overconfidence of deterministic rankings. Originality/value – The fundamental contributions of this paper are to (i) integrate LCSA uncertainty into decision-making processes through MCDA approach; (ii) provide a sensitivity analysis about the MCDA method choice, (iii) support decision-makers’ preference choices through a transparent elicitation process and (iv) provide a practical decision-making platform that accounts simultaneously uncertain LCSA performances with stakeholders’ value judgments.
URI: http://www.repositorio.ufc.br/handle/riufc/68292
ISSN: 1983-4659
Aparece nas coleções:DEPR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_bbtcarmo.pdf945,42 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.