Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/67343
Tipo: | Artigo de Periódico |
Título : | Deep learning for streamflow regionalization for ungauged basins: application of long-short-term-memory cells in semiarid regions |
Autor : | Nogueira Filho, Francisco José Matos Souza Filho, Francisco de Assis de Porto, Victor Costa Rocha, Renan Vieira Estácio, Ályson Brayner Sousa Martins, Eduardo Sávio Passos Rodrigues |
Palabras clave : | Ungauged basin;Long-Short-Term-Memory;Semiarid;Streamflow |
Fecha de publicación : | 2022 |
Editorial : | Water |
Citación : | SOUZA FILHO, F. A. et al. Deep learning for streamflow regionalization for ungauged basins: application of long-short-term-memory cells in semiarid regions. Water, vol. 14, n. 9, p. 1318-1338, 2022 |
Abstract: | Rainfall-runoff modeling in ungauged basins continues to be a great hydrological research challenge. A novel approach is the Long-Short-Term-Memory neural network (LSTM) from the Deep Learning toolbox, which few works have addressed its use for rainfall-runoff regionalization. This work aims to discuss the application of LSTM as a regional method against traditional neural network (FFNN) and conceptual models in a practical framework with adverse conditions: reduced data availability, shallow soil catchments with semiarid climate, and monthly time step. For this, the watersheds chosen were located on State of Ceará, Northeast Brazil. For streamflow regionalization, both LSTM and FFNN were better than the hydrological model used as benchmark, however, the FFNN were quite superior. The neural network methods also showed the ability to aggregate process understanding from different watersheds as the performance of the neural networks trained with the regionalization data were better with the neural networks trained for single catchments. |
URI : | http://www.repositorio.ufc.br/handle/riufc/67343 |
ISSN : | 2073-4441 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DEHA - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2022_art_fasfilho.pdf | 5,05 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.