Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/66516
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza Neto, Polycarpo-
dc.contributor.authorSoares, José Marques-
dc.contributor.authorThé, George André Pereira-
dc.date.accessioned2022-06-20T15:31:37Z-
dc.date.available2022-06-20T15:31:37Z-
dc.date.issued2022-
dc.identifier.citationNETO, P. S. et al. Uniaxial partitioning strategy for efficient point cloud registration. Sensors. Vol. 22, n. 8, p. 2887, 2022.pt_BR
dc.identifier.issn1424-8220-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/66516-
dc.description.abstractIn 3D reconstruction applications, an important issue is the matching of point clouds corresponding to different perspectives of a particular object or scene, which is addressed by the use of variants of the Iterative Closest Point (ICP) algorithm. In this work, we introduce a cloud-partitioning strategy for improved registration and compare it to other relevant approaches by using both time and quality of pose correction. Quality is assessed from a rotation metric and also by the root mean square error (RMSE) computed over the points of the source cloud and the corresponding closest ones in the corrected target point cloud. A wide and plural set of experimentation scenarios was used to test the algorithm and assess its generalization, revealing that our cloud-partitioning approach can provide a very good match in both indoor and outdoor scenes, even when the data suffer from noisy measurements or when the data size of the source and target models differ significantly. Furthermore, in most of the scenarios analyzed, registration with the proposed technique was achieved in shorter time than those from the literature.pt_BR
dc.language.isoenpt_BR
dc.publisherSensorspt_BR
dc.subject3D point cloud registrationpt_BR
dc.subjectPartitioningpt_BR
dc.subjectRigid body registrationpt_BR
dc.subjectIterative closest pointpt_BR
dc.subject3D surface matchingpt_BR
dc.subjectPoint matching algorithmpt_BR
dc.titleUniaxial partitioning strategy for efficient point cloud registrationpt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DETE - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2022_art_jmsoares.pdf2,61 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.