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Abstract: In 3D reconstruction applications, an important issue is the matching of point clouds
corresponding to different perspectives of a particular object or scene, which is addressed by the use of
variants of the Iterative Closest Point (ICP) algorithm. In this work, we introduce a cloud-partitioning
strategy for improved registration and compare it to other relevant approaches by using both time
and quality of pose correction. Quality is assessed from a rotation metric and also by the root mean
square error (RMSE) computed over the points of the source cloud and the corresponding closest
ones in the corrected target point cloud. A wide and plural set of experimentation scenarios was used
to test the algorithm and assess its generalization, revealing that our cloud-partitioning approach can
provide a very good match in both indoor and outdoor scenes, even when the data suffer from noisy
measurements or when the data size of the source and target models differ significantly. Furthermore,
in most of the scenarios analyzed, registration with the proposed technique was achieved in shorter
time than those from the literature.

Keywords: 3D point cloud registration; partitioning; rigid body registration; iterative closest point;
3D surface matching; point matching algorithm

1. Introduction

Recent advances in depth sensing technology have favored the progress of research
in many areas. For example, facial and expression recognition [1–3], robotic vision [4],
UAV-pose estimation (Unmanned Aerial Vehicle) [5], rigid registration have benefited from
scene information in three dimensions usually made available as point-cloud data.

In the past few years, the field of image registration has grown considerably, with
the publication of new methods [6–8], and reviews and surveys [9,10]. In simple terms,
registration in image processing refers to the mathematical operation needed to match
different perspectives of a given scene by proper association of the corresponding parts
present in partial views; whenever the operation assumes the form of a unique transforma-
tion accounting for rotation and translation of the entire scene, it is called rigid registration:
otherwise, it is a nonrigid registration. Therefore, it is vital for scene reconstruction, which,
in turn, finds numerous applications in computer graphics, human-computer interaction,
robot navigation etc.

To provide an example of how important it can be, in navigation experiments of mobile
robots, the fundamental problem of localization can be achieved by registering multiple
views as acquired by several sensors [11], and the registration itself can be used to help
determine their relative position and orientation [12].

There are several registration methods for 3D data in the literature: the Iterative
Closest Point (ICP) is the pioneer among local approaches [13], and is a popular choice for
efficient registration of two point clouds under a rigid transformation for its simplicity. On
the other hand, the original ICP is known to be computationally demanding owing to the
correspondence step, which requires up to N2 operations for N-sized point clouds; it is also

Sensors 2022, 22, 2887. https://doi.org/10.3390/s22082887 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082887
https://doi.org/10.3390/s22082887
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5057-1942
https://orcid.org/0000-0002-5111-5794
https://orcid.org/0000-0002-8064-8901
https://doi.org/10.3390/s22082887
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082887?type=check_update&version=2


Sensors 2022, 22, 2887 2 of 28

susceptible to the problem of falling into local minima and requires good initialization (e.g.,
number of iterations, threshold of convergence and initial guess, for example) to suitably
prevents that issue, thus avoiding bad registration; it performs better when some data
preprocessing steps are carried out, especially outlier removal, which favors the step of
correspondence checks.

In line with the research focused on improving computational-effort issues, in this
paper is proposed a registration algorithm relying on the ICP technique applied locally, in
the reduced space of partitioned input point clouds. The main contribution of the technique
is in the correspondence check, which is favored by the partitioning because it reduces the
number of points used for the matching. In other words, ICP is not replaced or generalized
in any sense; in fact, it undergoes a different and enhanced use when running within the
proposed approach as the registration core. The introduced strategy represents a three-fold
improvement of the algorithm proposed in [14], because the method is now generalized
in configuration and application scope (wide range of scenarios) as well as in the spatial
directions of partitioning and, more importantly, in the adopted stop criterion. Although
the investigation here reported accounts on ICP as the registration core, the approach
can suit other techniques and can provide them with significant improvements in the
qualitative and time performance of registration.

This work is organized as follows: In Section 2 a brief review of related works is
presented, which is followed by a discussion of the main differences of the proposed
point-cloud-partitioning algorithm in comparison to its previous version, in Section 3.
Section 4 describes the algorithm itself, and in Section 5 the materials and databases used
in the various experiments as well as implementation issues are detailed. In Section 6,
the results of both time performance and registration accuracy of every experiment are
reported. Finally, in Section 7 a discussion is presented.

2. Related Works

The problem of point cloud registration is addressed in the literature from different
approaches; in essence, most of the techniques either rely on methods applied to the spatial
coordinates of points or on methods running on some feature space.

In traditional schools, which comprise the well-known ICP [13] and its over 400 variants
(until 2011 and only those published in IEEE Xplore c©) [15], there is a lot of interest due
to the simplicity and availability of solutions within open source code libraries. Among
those variants, some recent implementations of this local approach deserve some attention.
For instance, the Efficient Sparse ICP [16], which combines a simulated annealing search
along with the standard Sparse ICP [17], which attempts to solve the registration problem
through sparse-induced norms. The issue of outdoor scene registration is addressed by
the authors of the Generalized ICP [18]. This algorithm exploits local planar paths at
both point clouds, which leads to the concept of plane-to-plane in the registration. In
that contribution, the authors generalize alignment-error metrics originally introduced in
Besl and McKay [13] and Chen and Medioni [19], and although efficient, it is affected by
the non-uniformity of point density over the surfaces being matched. This is interesting
because it may be regarded as a dense-cloud oriented approach, but fails in non-structured
scenarios or well-behaved environments, as claimed in [15,20].

In addition, the Normal Distributions Transform (3D-NDT) [21] is worthy of discussion
because it makes tractable the problem of matching dense clouds and, in addition, it is a
technique conceptually different to ICP; here, the scene is discretized into cells, each being
modeled by a matrix representing the occurrence of linear, planar and spherical occupation
of points, and then a nonlinear optimization strategy for cloud transformation is applied.
However, this approach is rather time-consuming and unsuitable for low-performance
hardware, as claimed by the authors in [22].

In 2014, Super4PCS was proposed [23], which solves the registration task with
O(n + k1 + k2), where k1 is the number of pairs in the target cloud at a given distance r
and k2 is the number of candidate congruent sets. In addition, other global registration
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algorithms have been proposed and published. One of the most relevant is the Go-ICP [6],
which combines branch-and-bound algorithms and the classical ICP.

In other schools, some important local-feature-based methods have been presented
so far. In general, a feature descriptor should provide a comprehensive and unambiguous
representation of geometry locally; in line with that, for instance, the relevant-based
sampling approach of [24] was successfully demonstrated for point-cloud registration;
good matching performance was also reported in [25], in which curvature, point density
and other geometric features were employed in the correspondence step of ICP and in the
error metric as well.

In general, to allow for an efficient match, descriptors are expected to have a level of
robustness to external perturbations [26], or even invariance to certain transformations [27,28].
The fast point feature histogram [29] is among the most popular descriptors. The latter
was used in [29] within a registration pipeline; a rough RANSAC-like pose adjustment was
performed in the feature space as calculated from the FPFH, which was followed by a fine
correction step with the ICP.

Despite the fact that they usually provide comprehensible descriptions of point clouds,
some of the recent interest has shifted towards deep learning approaches. For instance,
PointNetLK [30] is a network that can achieve matching by optimizing the distances in
the feature space. Another contribution in this field is CorsNet [31], which combines the
local and global characteristics of the point clouds to be matched. In general, many of the
contributions are based on convolutional neural networks, which rely on several layers
together with hierarchical characteristics of a large number of point cloud samples, which
ultimately can limit applications [32].

In the last few years, partition or patch-based approaches have appeared in the
literature. For example, in [33], the SLAM (Simultaneous Localization and Mapping)
problem is addressed using a partition-based approach responsible for finding a number
of tagged objects, making them useful for scene registration. Instead of objects-of-interest,
Fernandez-Moral et al. [34], performed segmentation to look for plane surfaces in 3D scenes
prior to registration.

This way of approaching the registration of an entire scene from a small part of it
is interesting per se, because it means saving computation efforts; the drawback is that,
if no proper care is taken, the surface under interest might suffer from significant loss
of information and/or inevitably high ambiguity, what would ultimately limit the abil-
ity to retrieve orientation; another negative side is that the inclusion of tagged objects
to favor segmentation could be argued as a non-acceptable intrusion in the scene for a
given application.

A way to circumvent this problem is to consider small parts yet spanning the entire
scene. This was the rationale of the cloud-partitioning ICP (CP-ICP) introduced in [14],
in which the source and target information of the object to be registered are sampled
along a given spatial direction into slices of point-clouds; in different iterations, only the
slices undergo pose correction by ICP. The method was improved in [7] by the inclusion
of a sufficient matching stop criterion. The technique was further improved to provide
flexibility in the spatial direction of point-cloud sampling among the three principal axes
the local frame and tuning of the stop criterion, giving rise to the version presented in
this manuscript, named Uniaxial Partitioning Strategy (UPS), which will be detailed in the
following pages. It should be emphasized that the approach can accommodate different
variants according to the technique implemented at the registration core, hence, it can find
the interest of researchers developing the field of point cloud registration.

3. Our Contributions

In this new approach to point cloud registration, three major improvements were
made compared to [7]:

(a) The partitioning approach is now applicable for retrieving orientation resulting from
multiple rotation phenomena around general axes; in addition, there is now flexibility
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in the principal axis along which cut-sectioning is done. Compared to previous
versions, the choice of the axis is now automatic. Currently, the algorithm chooses the
cutting axis after measuring the data variance along the three principal axes of the
local frame. For more details, see Section 4.2.1;

(b) The method now has two operating modes, namely configurations A and B, which
refer to the chosen cutting axes; they can either be different (configuration A) or the
same for both target and source clouds (configuration B). Configuration A allows
partitioning source and target models in different directions, what sounds useful for
registration where point clouds come from different acquisition systems, for example.

(c) For that which concerns the stop criterion, it is now calculated for every input cloud on
the basis of an original proposal called micromisalignment (detailed in Section 4.2.3),
which is conducted automatically, implying no need for previous ad hoc knowledge
of the input models. To the best of the authors’ knowledge, no other work in the
recent literature suggests a measurement for registration goodness based on the input
model itself and, as such, automatically adjustable. Other approaches instead rely on
the use of parameters or constants of limited scope.

Comparing to the literature, it is to be emphasized that our technique is a geometry-
preserving approach, since it works on the full ensemble of points, contrary to some
sampling techniques relying on representative points that do not belong to the data itself, or
even to descriptor-based methods that work in a space other than the original data, and yet
ours performs well in terms of both time and quality of alignment aspects. In addition, the
results reveal that the applicability extent of UPS is demonstrated for models ranging from
simple rigid objects to more interesting indoor and outdoor scenarios. Finally, robustness
to noise corruption was also assessed.

4. Uniaxial Partitioning Strategy

Consider two surfaces represented as point clouds: a source and a target point cloud.
The problem addressed is to successfully match them in position and orientation, that
is, find the rigid transformation representing the best overlap. Originally, this problem
was solved by the ICP algorithm, which is located in the nucleus of the UPS algorithm
in the present investigation. Nevertheless, other approaches may occupy the central part
of it, such as ICP point-to-plane and Generalized ICP. New joint strategies combining the
partitioning proposed here and deep learning approaches can be evaluated, in the future, if
the space of subclouds is used for data augmentation.

The algorithm starts by dividing each input cloud (source and target) into subclouds.
Then, these subclouds are iteratively subjected to pairwise ICP registration, which results in
an orientation matrix. Pose correction of the original (entire) point clouds is then assessed
from the matrix obtained and from a quantity check, which works as a stop criterion. These
steps are discussed further in the following subsections.

4.1. A Look at ICP

Before describing the method in detail, it is worth mentioning that the partitioning affects
ICP in a three-fold manner: selection of points, matching and metrics for alignment check.

4.1.1. Selection of Points

It is a good practice to run a pre-selection of points, thus reducing the effort in the
correspondence check step. In this regard, the literature introduces many strategies, such
as random [35] or uniform downsampling [36,37]. Although classical sampling strategies
may be very useful for computational reasons when dense clouds are concerned, sparse
point clouds might lead to the loss of relevant information. In addition, in the partitioning
approach there is a selection of points (because the cloud is not presented entirely for ICP
pose correction), but in the form of small pieces at a time, meaning that the cloud can
occasionally be assessed entirely whenever the iterations over the partitions fail to meet the
alignment requirements.
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4.1.2. Matching

The correspondence check of the ICP is the step responsible for proper point-association
between every point of the target cloud and every one belonging to the source counterpart.
It is very time-consuming, and in the literature, it is favored by known approaches for
data structuring, such as kd-tree [38]. In the present implementation of UPS it under-
goes the same way, but in the reduced space of subclouds, which ultimately reduces the
N × N search for correspondence step. It is worth mentioning also that here it was used
the Point Cloud Library [39] implementation of ICP, with built-in call to kd-tree search,
although it may be replaced by other alignments algorithms, according to the advances in
the state-of-the-art and to the application specifications.

4.1.3. Error Metrics

Among the known choices for error metrics to be minimized, classical point-to-point
metrics were adopted. However, this method relies on the concept of micromisalignment
of the entire input cloud, which can be tuned more or less strict according to the specific
aspects of the considered scenario. More details regarding this concept are provided in the
upcoming sections.

4.2. Mathematical Formulation

In this new approach for point cloud registration, partitioning and the stop criterion
play central roles. Here, the underlying mathematical formulation is presented.

4.2.1. Partitioning

Given two input models, namely the source (S) and the target (T) models, respectively,
NS-sized and NT-sized point-clouds, partitioning is the operation of grouping the points
comprised by each of them into smaller sets, amounting to k− 1 groups, hereafter called
subclouds and indexed by letter j. The grouping occurs by means of a cross-sectioning
of the given cloud and k planes along a principal axis, ξ-axis (which can be x, y or z-axis).
This is illustrated in Figure 1 for the Dragon model cut along the y-axis.

Figure 1. View of top-down partitioning on Dragon model.

Partitioning can be described as follows. Let Equations (1) and (2).

S = {si}, i ∈ N, 1 ≤ i ≤ NS, (1)

T = {tm}, m ∈ N, 1 ≤ m ≤ NT , (2)
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is the original source and target models and let Equations (3) and (4)

oSξ = {osi}, i ∈ N, 1 ≤ i ≤ NS, (3)

oTξ = {otm}, m ∈ N, 1 ≤ m ≤ NT , (4)

is the corresponding sets after ordering along the ξ-axis in such a way that the above
equations respective of the following, Equations (5) and (6):

osi · ξ̂ < osi+1 · ξ̂, ∀i, (5)

otm · ξ̂ <o tm+1 · ξ̂, ∀m. (6)

Finally, the subclouds are then created as NS
k and NT

k -thick slices of the ordered point
clouds, according to the following, in Equation (7) and (8):

Sj = {osi | (j− 1) · NS
k

< i < j · NS
k
}, (7)

Tj = {otm | (j− 1) · NT
k

< m < j · NT
k
}. (8)

As should be noted, the partition-axis must be chosen before the grouping itself; in
this regard, UPS offers two variants, namely, Configurations A and B. In both variants,
the cutting axis is chosen after calculating, as a measure of dispersion, the variance in the
principal axes of the local frame. The choice of sectioning along the x-, y-, or z-axis is in
part related to the fact that the data are organized as a list of point coordinates in point
cloud files. Among the three alternatives, the direction of the maximum data dispersion is
considered as a criterion guiding the choice of the cutting axis.

The reader could think of determining the cutting axis by using PCA (Principal
Component Analysis), since it provides an insight on data spatial dispersion. The point
is that its outcome could suggest any spatial direction and not only those corresponding
to the three principal axes of the local frame of the acquired point cloud and that would
come at a cost. Since UPS relies on the simplicity of cutting along x- or y- or z-axis and
nothing else in its conception, only the essentials of PCA were inherited and kept, namely,
the computation of variance along the main axes mentioned above.

That maximum data dispersion criterion for the cutting axis is also a choice coming
from observation and aims at favoring a reasonable tradeoff between the average slice size
(in number of points) and the number of slices. In this regard, it was found [14] that these
are antagonic aspects; they affect rapidity and registration quality in opposite ways. In that
sense, the axis along which data spreads more allows for a larger number of slices, meaning
more flexibility when tuning this important algorithm configuration parameter. It is not by
any means assumed that the given surface has the maximum data dispersion along one of
the three principal axes. Indeed, in the general case, data can be maximally distributed over
any arbitrary oriented direction. Hence, it is speculated that cutting along one principal
axis suffices for the purpose of finding good candidates for registration among subclouds.

From the comments above, configurations can be synthetized as follows:

• Configuration A: In this configuration, the partition-axis of a given input model is
chosen as the one with the largest data variance among the three principal axes.
Therefore, source and target models can be cut along different ξ-axes, which might
benefit scenarios in which they differ significantly in orientation (for example, where
clouds are randomly rotated [6] or captured by different sensors [40]).

• Configuration B: Here, data variance is calculated only in the target point cloud and the
chosen ξ-axis is assigned to both input models, performing faster than the previous one
for obvious reasons. It might be a good choice for situations in which the ground truth
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is known, as well as for registration of sequentially acquired shots in which orientation
changes only in one degree of freedom (for example, in-plane robot navigation in
SLAM applications [41]).

4.2.2. Convergence Check

As mentioned earlier, the correspondence check step is performed here in the reduced-
space of subclouds; hence, the objective function to be minimized is slightly modified to
address the fact that there are iterations over subclouds in this partition-like approach. In
simple words, compared to the cost function of the classical ICP, it appears to be dependent
on the subcloud index, j, see in the Equation (9):

Fj(q) =
k

NS

NS
k

∑
i=1
‖ tm − (Rj(qR)si + qT) ‖, (9)

which is defined for j = 1, ..., k. This implies that the index range of points si and ti entering
the summation covers the ensemble of points lying in the jth subcloud.

In addition, in the cost function, the parameters qR and qT are, respectively, the
orientation vector represented by a unit quaternion and the translation vector; the former
can be used to give the rotation matrix Rj appearing in the Equation (for details, see [42]).
These vectors can be put together in compact form q = [qR | qT ]

t, thus allowing the
retrieval of the complete registration vector relating subclouds Sj and Tj, in the same way
as described in [13], adapted to the reduced space of subclouds.

Finally, it should be emphasized that the registration vector (and, consequently, the
rotation matrix) is obtained every time a pair of subclouds is subjected to matching, which
is then extended to the full space of point clouds through the transformation of the input
target cloud by the matrix Rj and posterior quality checking of alignment to the source
cloud. The misalignment between the target and source clouds is calculated and compared
to ϕ, a threshold value that represents the stop criterion. The details of our proposition for
such a threshold value are given next.

4.2.3. Stop Criterium

Our proposed method for calculating the threshold value is very simple. Initially to
ϕ it was assigned the deviation as measured from the root-mean-square error between
the target point cloud and a slightly 3D-misaligned copy of it. A slight misalignment
indicates a change in orientation around the three degrees of freedom. This is called
micromisalignment hereafter.

The concept is illustrated in Figure 2. Essentially, from a frame A, representing the
original pose of the input model, a micro-misaligned frame B can be obtained if small
rotations are applied successively around the principal axes. In the example illustrated,
it starts with a rotation around Z by an angle α, thus giving rise to intermediate frame
B′, then around Y by β, giving rise to intermediate frame B”, and finally around X by γ,
leading to the final frame B.

Figure 2. Representation of a sequence of small rotations around principal axes.
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Since these are rotations around local axis, the Z-Y-X representation for the Euler
angles can be used and, imposing the rotation angles around the three axes to be equal
amount, α = β = γ, the resulting rotation matrix resembles such as the following, in
Equation (10):

A
BRZYX = RZ(α)RY(β)RX(γ) = Rθ

=

 c2
θ cθs2

θ − sθcθ s2
θcθ + s2

θ
cθsθ c2

θ + s3
θ cθs2

θ − cθsθ

−sθ cθsθ c2
θ

.
(10)

where cθ and sθ are short forms for cosine and sine of θ.
Once the rotation matrix of the misalignment is multiplied by the input target point

cloud, a slightly misaligned point cloud is obtained, that is, a micro-misaligned instance of
it is available, from which it can be calculated a deviation measurement quantifying the
threshold value for the stop criterion, in Equation (11):

ϕ =

√√√√ 1
NT

NT

∑
m=1
‖ tm − Rθtm ‖, (11)

where the summation spans over the entire ensemble of points of the target cloud. As
mentioned so far, this quantity represents a lower-bound to be reached by the root-mean-
square error between the input target and source clouds. The reader should realize that the
smaller θ is, the better the misaligned copy fits the original cloud, meaning that the RMSE
(in meters) between the two instances of the cloud expresses a quantitative measure of
good matching, and thus can be used as a stop criterion threshold in the algorithm. In that
measurement, RMSE is calculated as the root mean square of the 3D distance between each
point of the target cloud and its corresponding closest one on the micromisaligned target
cloud. More details on this parameter are provided later in this paper. For completeness,
the UPS algorithm flowchart is shown in Figure 3.

Figure 3. UPS pipeline in three subtasks (red, green and blue colors): (1) Partitioning; (2) Alignment of
the subcloud pairs and (3) Quality check of alignment and replication of the local rigid transformation
to the entire cloud. Parameter ∆t represents the running time in the entire execution of the algorithm
and is the quantity present in the tables reported later in Section 6. Finally, mn and mx are, respectively,
the minimum and the maximum number of points per partition.
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5. Materials and Methods

In this section, the methodology is introduced, describing the datasets used in the
experiments, as well as the occasional modifications performed in the point cloud models
for augmenting the set of investigation scenarios.

Our research was organized into seven experiments; from Experiments A to G, the
aim was to progressively add complexity to the investigation. In doing this, the analysis
started with pairwise registration from simple models for which the ground truth is known,
and then we moved to more interesting situations in which the number of partial views
increases, or the models suffer multiple rotations, or the models suffer from noise addition,
or yet they correspond to outdoor scenes, etc.

In the various experiments, the registration algorithms investigated changed accord-
ingly, in such a way to favor fair comparison to the literature or because in some experi-
ments, the use of some techniques simply would not make sense. The list of the algorithms
used in this investigation comprises Go-ICP and Go-ICP Trimming [6,43], Sparse ICP [17],
FPFH approach [29], CP-ICP [7] and ICP variants [13,18,19], 3D-NDT [21] and downsam-
pling methods [35,44,45].

In addition to the models made available with PCL [39], the models were obtained
from different sources: Parma University models [46], Statue Model Repository [17,47],
Stanford 3D Repository [48], as well as the particular data used in [23], indoor scenes
homemade acquired in our laboratory from Intel RealSense SR 300 [49], scenes acquired
outdoors on our university campus using the SICK lidar sensor, and ASL datasets [11].

For more details on the point clouds used in the Section 6, Table 1, which is devided
into the categories objects and scenarios, brings some characteristics, such as density
(approximate number of points ) and average file size. In order not to be repetitive, it is
worth mentioning that all files have the “.pcd" extension (Point Cloud Data).

Table 1. Information about the point clouds used in the experiments.

Objects Scenes

Model Dataset Density Size Model Dataset Density Size

Bunny
[48]

40 k 644.3 kB Lab. 1 Ours 56 k 683.9 kB
Dragon 35 k 1.2 MB Lab. 2 72 k 879.9 kB

Buddha 75 k 2.2 MB Office [23] 200 k 3.6 MB

Horse [46] 3 k 98.3 kB Stage 69 k 694.2 kB

Hammer 2k 74.2 kB House [39] 83 k 466.1 kB

Aquarius
[47]

64 k 784.8 kB Gasebo 1 [11] 153 k/67 k 5.1 MB
Bear 27 k 328.5 kB Gasebo 2 155 k/66 k 5.2 MB

Eagle 68 k 836.2 kB UFC Ours 1.2 M/828 k 9.8 MB

In addition to qualitative assessment (from simple visualization) of the various point
cloud matching performed so far, precious quantitative information is provided; such
analysis relies on four main quantities:

• the running time (in seconds) of the registration as required by the algorithms implemented;
• the RMSE measure (in meters; here computed between the source cloud and the target

cloud after pose correction);
• the estimated pose calculated according to the equivalent angle-axis representation

for orientation;
• the mean RMSE, calculated as an average over the 3D models used in each experiment.

Implementation Details

To allow for future validation of the proposed technique, a few notes regarding its main
configuration parameters are worth noting. The misalignment, θ, gives the algorithm the
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ability to set the quality of pose correction as flexible as the application requires; they were
analyzed, in preliminary tests on Happy Buddha, Dragon, Horse and Hammer models the
effects of making the criterion as rigid as θ = 0.1◦, as well as its route towards larger values
until θ = 3.0◦. For those models, Figure 4 plots the trend between the micromisalignment
angle and the corresponding RMSE calculated from the cloud and its micro misaligned
copy. The picture also shows, with circle markers, the RMSE calculated from source and
target clouds when the ground truth is applied for pose correction. One can see that θ = 2.5◦

is the lower limit for the entire set of models and is imposed by the Hammer model. Trying
to force an even shorter angle would make the algorithm to get stuck, since not even
the pose alignment according to the ground truth is able to give the corresponding small
RMSE. In other words, it gives the closest RMSE to the ground truth achievable by an
intentional micromisalignment .

Figure 4. Measurement of the angle value (in radians) to calculate the micromisalignment .

Another important configuration parameter, the amount of subclouds, k represents a
quantity for balancing the time performance and the amount of data needed in a subcloud
to achieve a good global matching. In this paper, upper and lower limits were defined
to 1000 points/subcloud and 2000 points/subcloud, to guarantee that sparse and dense
models belonging to a wide set of experiments could be registered with minimal user
action. Finally, to determine the ICP convergence (which is by the way at the registration
nucleus of our method), the maximum number of iterations was chosen to be 30 trials; this
is in accordance with the range (30–50) suggested in [13], and to preliminary investigation
made in the Bunny and Dragon models.

To make a fair comparison throughout the entire set of experiments, the ICP parameters
were kept equivalent for all the variants reported here, and the various techniques followed
a preliminary study for parameter setting from information made available by the respective
authors. Most of the algorithms used in the scenarios were written in C++ in the framework
of the PCL library [39], with the exception of Sparse ICP and Go-ICP (and its trimming
variant), whose executable versions were made available after [6,17], respectively. The
platform used was Intel R© CoreTM i5 and 8 GB RAM. To see the programs of the techniques
present in the Section 6, access the following link https://github.com/pneto29/UPS_
paper accessed on 15 February 2022). For details on parameters, order of parameters and
suggested values, see the README.md files in each subdirectory.

https://github.com/pneto29/UPS_paper
https://github.com/pneto29/UPS_paper
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6. Results
6.1. Simple Pairwise Registration

This experiment is aimed at comparing the various algorithms at pairwise registration
tasks, in which two views of different objects are subject to registration by Go-ICP, Sparse
ICP (as provided does not output the retrieved rotation), classical ICP, CP-ICP, and the UPS.
It should be emphasized that some of those techniques were evaluated under different
configurations (for example, Sparse ICP with 30 or 100 iterations, UPS with flexible choice
of partitioning axis, etc). Quantitative assessment is based on RMSE as well as on the
rotation as given by the equivalent angle-axis representation, since the ground truth was
available for the 3D models in this experiment.

Table 2 shows the performance of each technique as running time in seconds. In
boldface we highlight the fastest technique for each 3D model evaluated. According to it,
the UPS techniques achieved good performance, except for the Horse model.

Table 2. Running time to align pairs of clouds under known ground truths.

Bunny Dragon Buddha Horse Hammer

CP-ICP 4.922 3.847 9.085 0.338 0.202
Go-ICP 36.537 35.847 36.288 42.348 36. 198

FPFH+ ICPp2pt 125.438 91.969 413.457 5.526 3.086
SparseICP30 22.543 23.260 53.506 2.628 1.454
SparseICP100 72.726 55.799 179.481 7.486 4.227

ICPp2pt 8.202 6.903 15.585 0.696 0.351
UPSc f .A 16.392 3.584 2.501 20.928 1.543
UPSc f .B 3.996 1.755 2.416 7.015 0.535

Additionally, the rotation obtained for each model was analyzed; this is summarized
in Table 3. In bold we highlight the technique that is closest to the ground truth. It can be
observed that UPS achieved superior performance as it approached better the ground truth
for most of the models.

A comment is worth making regarding the choice of configurations A and B of the UPS,
as Tables 3 and 4 reveal, both configurations achieve the same pose correction performance,
which is a very simple experiment in which the rotation phenomenon is around a single
principal axis (z-axis in the present case), a typical in-plane robot navigation system, for
instance, could, in principle, benefit a lot from configuration B, since in that application the
change of orientation is usually uniaxial.

Table 3. Rotation obtained from the point cloud registration under known ground truth.

Bunny Dragon Buddha Horse Hammer

Ground Truth 45◦ 24◦ 24◦ 180◦ 45◦

Axis Y Z Z Z Z

CP-ICP 16.498◦ 24.009◦ 22.543◦ 55.869◦ 35.075◦

Go-ICP 34.480◦ 61.281◦ 15.612◦ 42.348◦ 36.198◦

FPFH+ ICPp2pt 46.706◦ 49.605◦ 50.154◦ 187.515◦ 58.929◦

ICPp2pt 41.301◦ 23.863◦ 21.679◦ 36.342◦ 45.577◦

UPSc f .B 43.246◦ 24.091◦ 24.039◦ 182.610◦ 44.591◦

UPSc f .A 43.246◦ 24.091◦ 24.039◦ 182.610◦ 44.591◦

It is to be mentioned, however, that the quality of pose correction as measured by the
RMSE was globally superior, even for the Horse model, as it can be checked from Table 4,
which brings this measure for the various methods and models.See the values in bold, they
represent the smallest RMSE values.
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Table 4. RMSE measure after pose correction under known ground truths (in meters).

Bunny Dragon Buddha Horse Hammer RMSEavg

CP-ICP 0.011 0.002 0.003 0.029 0.010 0.011
Go-ICP 0.089 0.055 0.032 0.523 0.207 0.181

FPFH+ ICPp2pt 0.004 0.003 0.004 0.004 0.005 0.004
SparseICP30 0.057 0.002 0.003 0.027 0.011 0.020
SparseICP100 0.054 0.002 0.003 0.026 0.006 0.018

ICPp2pt 0.002 0.002 0.003 0.020 0.004 0.006
UPSc f .B 0.002 0.003 0.003 0.003 0.004 0.003
UPSc f .A 0.002 0.003 0.003 0.003 0.004 0.003

For the sake of illustration, the registration of Bunny and Horse models are depicted
in Figure 5a–d for different methods. To be highlighted is the CP-ICP limitation when
performing the registration of Bunny model; since this is a Y-axis rotation, and the CP-ICP
is limited to partitioning along the Z-axis, the overlapping between subclouds of source
and target is affected.

Finally, the flexibility of the UPS to find a good axis for partitioning was evidenced
in this initial experiment. It can be seen how counterparts fail, especially when facing the
Horse model, which was used to impose the hard initial condition of large orientation
deviation (180◦). This might confirm the expectation that classical ICP better suits fine pose
correction. Furthermore, the results of Figure 5b reveal that our approach enhances ICP
performance by giving it the ability to successed in coarse pose correction.

(a) (b)

(c) (d)

Figure 5. Alignment of the Bunny and Horse models, respectively, for CP-ICP and the proposed
method. (a) CP-ICP (Bunny model). (b) UPS (Bunny model). (c) CP-ICP (Horse model). (d) UPS
(Horse model).

6.2. Registration under Combinations of Arbitrary Rotations

The goal of this experiment is to see the ability to match the views of the source and
target when successive and arbitrary rotation phenomena around the principal axes occur;
hence, no ground truth is given. The algorithms used for comparison are Go-ICP (which
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claims to be able to deal with such a scenario), as well as Sparse ICP. See the results in
Table 5, where the UPS performs better than the others.

Table 5. Elapsed time (in seconds) and RMSE (in meters) of the registration under conditions of
rotation on arbitrary axes.

Aquarius Bears Eagle –

Time RMSE Time RMSE Time RMSE RMSEavg

Go-ICP 55.806 0.714 64.914 0.831 60.492 0.867 0.804
Sparse ICP 798.121 0.802 252.054 1.737 650.190 0.902 1.147

UPSc f .A 29.034 0.016 15.400 0.051 2.154 0.034 0.034
UPSc f .B 5.530 0.016 5.024 0.051 2.140 0.034 0.034

In Figure 6a,c, the initial poses of the two models are shown and reveal how different
they are (in position and orientation) after several arbitrary transformations intentionally
carried out. This is the case of an unknown rotation about an arbitrarily oriented axis, and
not about some of the principal axes. Once again, for illustration we bring in Figure 6b,d
the final pose as obtained after registration.

(a) (b)

(c) (d)

Figure 6. Registration of partial views of the Eagle and Aquarius models under rotational phe-
nomena on generic axes. (a) Initial pose (Eagle). (b) UPS (Eagle). (c) Initial pose (Aquarius).
(d) UPS (Aquarius).

At this point, UPS’s ability to retrieve aggressive rotations as those reported in Figure 6a–d
can be questioned in case of shapes that generate a subcloud space of ambiguous surfaces.
For instance, cylindrical-shaped objects such as the Hammmer model of Figure 7. That
figure reports the result of UPS registration for a scenario in which target and source model
deviate to each other by two successive rotations of 90◦ degrees around two principal axes.
Although the two clouds have low overlap in the universal frame space, the algorithm was
able to solve that case because it has the flexibility to choose different cutting-axes. This way,
it can generate a subcloud space of slices which do have correspondence among themselves.
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Here, the algorithm worked in Configuration A, cutting along the Y-axis the source model
and the Z-axis the target model with 4 slices of nearly 500 points each. After 1.05664
seconds, the algorithm satisfied the stop criterion quality and reached RMSE = 0.00407211.

Figure 7. Registration of a cylinder-like object aligned by UPS configuration A.

6.3. Downsampling Effect

Until now, it has been stated that our proposal is not a sampling, but rather a patching-
like approach for registration, and the more evident benefit of it is the reduction in time
effort achieved with the cloud slicing already described. Nonetheless, one could argue that
it is quite similar to the concept of sampling, since every time the registration nucleus of
the algorithm comes to the scene, it operates not in the full ensemble of points of the given
cloud, but in a small portion of it instead. To cope with this plausible understanding, in
this section it is studied how UPS performance is compared to known sampling procedures
usually applied along with ICP. Uniform sampling was chosen, with 67% size reduction for
Buddha and 45% for Dragon, as well as random sampling with 50% and 70% size reduction.
Once again, the results are summarized for the time and quality of pose correction, and
are shown in Table 6 for both the Dragon and Buddha models. See the values in bold that
represent the best results.

Table 6. Effect of downsampling in the registration. View elapsed time (in seconds) and RMSE
(in meters).

Dragon Buddha

Time RMSE θ Time RMSE θ RMSEavg

Uniform 0.298 0.004 23.683 0.462 0.004 13.184 0.004
Rnd.50% + ICP 5.058 0.002 23.873 8.428 0.003 21.765 0.002
Rnd.70% + ICP 2.268 0.002 23.843 5.140 0.003 21.490 0.002

UPSc f .A 3.584 0.003 24.091 2.501 0.003 24.039 0.003
UPSc f .B 1.755 0.003 24.091 2.416 0.003 24.039 0.003

The numbers in the table reveal that ICP aided by uniform sampling was faster than
our method, but it came at the expense of bad orientation correction; indeed, Dragon and
Buddha ground truths were better approached by UPS, with acceptable time-performance
especially in configuration B. To provide support for these numbers, the visualization
of Buddha registration in Figure 8a–c shows evident misalignment after ICP aided by
sampling methods.
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(a) (b)

(c) (d)

Figure 8. Comparison of the registration results for the Buddha model. (a) Uniform. (b) Random
50%. (c) Random 70%. (d) UPS.

6.4. Registration in the Presence of Different Levels of Gaussian Noise

In this section, the existence of additive Gaussian noise in both source and target
clouds was investigated, emulating the effect of measurement uncertainties associated with
acquisition issues. The independent parameter is the standard deviation of the z-coordinate,
which lies whitin the range of (0.002–0.005). Here, the investigated methods are Go-ICP
and its Trimming version (with parameter ρ set to 0.1), the ICP variant based on FPFH,
Sparse-ICP (with iteration limits set to 30 and 100), and ours. The model considered was
the Bunny point cloud. Table 7 shows the running time in the registration for the different
conditions of noise intensity, revealing that the UPS in configuration B outperformed in
this experiment and was able to beat the other methods, being at least two times faster in
most scenarios. Best results are boldfaced for better comparison.

Table 7. Running times of registration methods for noise-influence study.

σ Range 0.002 0.0025 0.003 0.005

Go-ICP 36.811 36.996 36.736 36.707
Go− ICPTrimming 37.867 37.389 38.721 37.888
FPFH + ICPp2pt 126.108 125.918 125.233 121.885

SparseICP30 28.982 29.883 28.535 32.443
SparseICP100 96.184 103.004 95.748 105.784

UPSc f .A 47.046 48.915 43.434 67.582
UPSc f .B 14.155 15.501 13.751 22.195

Table 8 instead shows the quality of pose correction as measured by RMSE. Some
remarks can be drawn here: (a) ICP based on FPFH descriptor and the Sparse variant
performed poorly; (b) Go-ICP and the Trimming version also showed bad performance,
what might be associated to the inherent sampling step needed for optimization issues in
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those techniques, and the existence of increasing uncertainty in data degrades the surface
representation provided by sampling. (c). UPS is not affected in terms of the quality of
pose correction, and the time performance started suffering only at a large noise intensity
level. (d). Beacause all these techniques are subject to the point-correspondence step of
ICP, the results suggest that they performed differently because they act differently in
surface representation and because they differ in their intrinsic ability to overcome the bad
representation caused by noise addition. In that view, our approach suffered less because it
does not change the surface representation by any means, it breaks the surface into small
pieces. Best results are boldfaced for better comparison.

Table 8. RMSE (in meters) achieved by registration algorithms on Bunny model with noise level.

σ Range 0.002 0.0025 0.003 0.005 RMSEavg

Go-ICP 0.041 0.041 0.046 0.058 0.046
Go− ICPTrimming 0.038 0.036 0.041 0.047 0.040
FPFH + ICPp2pt 0.016 0.016 0.022 0.016 0.017

SparseICP30 0.059 0.057 0.073 0.011 0.050
SparseICP100 0.027 0.010 0.062 0.005 0.026

UPSc f .A 0.002 0.002 0.002 0.002 0.002
UPSc f .B 0.002 0.002 0.002 0.002 0.002

To illustrate the performance of UPS compared to the other methods, the registration
of the Bunny model for σ = 0.005 was shown in Figure 9a–d.

(a) (b)

(c) (d)

Figure 9. Alignment of Bunny model with added noise. (a) Go-ICP. (b) Go-ICP Trim. (c) FPFH
approach. (d) UPS.

6.5. Partial Registration of Point Clouds with Different Overlap Rates

In many situations of 3D scene perception, including cluttering and occlusion scenarios,
the models which go into registration do not present full overlap. It is a rather frequent
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concern, hence, the ability of the registration algorithm to deal with models presenting
partial overlap of common regions in the target and source surfaces. Since ours is a
partitioning approach, one could argue that the partial overlap scenario can be particularly
challenging for it. In this section, this issue was addressed on the basis of an approach
similar to [50]. Our goal is to investigate the extension of the method towards the partial
overlap of the objects studied so far.

Let us start with the dragon, bunny and buddha models at overlap ratios of 25%, 30%,
50% and 75% between source and target data. Results are shown in Figure 10 along with
the ground-truth (named as θbe f ore) and the retrieved orientation obtained by UPS (named
as θa f ter). The reader can see that UPS performed well for dragon and buddha models, but
did not for the bunny model at low overlap ratios. The observed decrease in the alignment
quality is associated with the lack of surface representation in the generated slices after
our partitioning approach, meaning that the correspondence step of the ICP algorithm
running in the inner level of the method starts failing at low overlap ratios. Nonetheless, it
is worth emphasizing that the bunny model poses challenges due to the larger orientation
deviation between source and target shots (of about 45◦) compared to the other models,
which amounted to 24◦ instead.

In general, according to the results, higher overlap ratios obviously lead to good source-
target matching, with retrieved orientation approaching the ground-truth. Although that
conclusion was expected already, it is useful to point to a second issue to address: the
region of overlap itself, and its hypothetical influence on the alignment quality. We have
been pursuing so far (since the début of our partitioning proposal in [14]) that there are
preferential regions for the matching and that the exhaustive search for it among the slices
of points is just one way to find them.

Figure 10. Partial registration of point clouds for the dragon, buddha and bunny models considering
25%, 30%, 50% and 75% overlap ratios. Note in the first column the value of θbe f ore, referring to
ground-truth. For the other columns, θa f ter means the result of the pose correction.
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In line with this, the study was moved to the situation of 50% overlap ratio as before,
but this time changed the portion of the models overlapping to an intermediate region.
Figure 11 helps us to understand that, for the dragon, it means that the feet and the head
do not undergo registration, whereas for the bunny, the upper part of head as well as the
ears are neglected along with the feet. The reader should notice what a good registration
was achieved for those models. On the contrary, for what concerns the buddha model, the
use of the intermediate portion led to a challenging situation and UPS was able to retrieve
the orientation with about 10◦ error (see inside the red rectangle how the feet of target and
source deviate to each other).

To better comprehend this, a look at the slices Tj and Sj which “won” the registration
according to UPS can be useful. Those are plotted in red colour in the rightmost pictures of
buddha model at the bottom part of the Figure 11. The picture also highlights the centroids
of both target and source winning slices marked by tiny blue circles. The bad registration
in this case can be explained by the distance between those centroid points, what leads to
unreliable translation at the initial steps of the ICP algorithm. Hence, for better use of the
partitioning approach it is strongly suggested the input parameters to be set to provide
similar amounts of points in the target and source slices.

Partitioning is splitting source and destination into k subclouds, aligning source and
destination subcloud pair with the same index. In the condition where we have similar
density/resolution, aligning sub-clouds of the same index allows us to align topologically
corresponding slices.

In situations where there is a density difference, one of the clouds corresponds to a tiny
portion of the other, the models will be partitioned into different numbers of sub-clouds of
similar size; however, the indices that will be aligned do not present topological similarity.
Aligning sub-clouds arising from partitioning between disproportionate original clouds,
with low overlap, leads to poor alignment, as can be seen in the example of the Buddha
model, in Figure 11.

Figure 11. UPS registration corresponding to the case of 50% partial-overlap between source (green
colour) and target (blue colour) for the region around the buddha stomach. In red colour, the target
and source subclouds selected for the global registration after UPS execution.

Obviously, future versions of UPS may consider partitioning into different numbers
of subclouds and also consider associating different pairs of source and target slices (for
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example Tj with Sj+1 or Sj−1). This could lead to a more general search space of candidates
to match and, as such, better outcomes could be achieved. In that augmented space, one
interesting initial investigation to point attention is on close (but non-contiguous) sub-
clouds, since the proximity helps preserve the correspondence of surface points. Our guess
is, however, that would come at the cost of rising computing efforts, and that is why it has
not been considered so far .

The results of a final investigation regarding the partial overlap scenario scenario are
shown in Figure 12. Here, we were interested in taking the worst alignment case as mea-
sured by the retrieved orientation obtained by UPS and comparing it to other approaches
from the literature. This was conducted for the buddha (75% overlap, θa f ter = 23.1◦) and
bunny (25% overlap, θa f ter = 38.9◦) models. The approaches chosen were Go-ICP and Four
Point Congruent Sets (4PCS) [51] because these are claimed as good candidates for partial
overlap registration scenario and appear in the wide set of techniques investigated in the
present work. Middle and right columns of the picture show that those approaches did not
beat the quality of registration achieved by UPS.

Figure 12. Partial-overlap UPS registration of Buddha and Bunny models and comparison to Go-ICP
trimming and 4PCS. In the red boxes, regions with large correction errors are highlighted.

6.6. Registration of Indoor Scenes

In this section, in this section, the investigation context changes from single objects to
scene registration, starting with indoor environments and registration in pairs. In addition
to using homemade acquisitions in our lab (named Lab. 1 and Lab. 2 models), the Office
and Stage models from [23] were also considered. The time performance of the various
methods is summarized in Table 9. A look at the numbers reveal that UPS was less efficient
in the registration of Lab. 1. Notice the best results, highlighted in bold.
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Table 9. Running time (in seconds) to align pairs of indoor scenes (in seconds).

Lab. 1 Lab. 2 Office Stage

ICPp2pln 2.331 3.986 18.793 21.117
Generalized ICP 12.634 20.897 590.206 397.375

3D-NDT 70.781 138.931 426.403 472.563
UPSc f .A 29.649 3.217 78.294 10.908
UPSc f .B 5.163 2.491 17.576 9.861

Nevertheless, when it comes to quality of pose correction, as measured by the RMSE
(see Table 10), once again the UPS shows good performance, somehow compensating for
the lack of time efficiency. See lower RMSE values in bold.

Table 10. RMSE (in meters) of registration of pairs of indoor scenes.

Lab. 1 Lab. 2 Office Stage RMSEavg

ICPp2pln 0.012 0.019 0.059 0.045 0.034
Generalized ICP 0.024 0.038 0.310 0.175 0.067

3D-NDT 0.046 0.047 0.311 0.167 0.143
UPSc f .A 0.012 0.019 0.049 0.047 0.032
UPSc f .B 0.012 0.019 0.049 0.047 0.032

To illustrate a case of indoor scene registration, in Figure 13a,b the shots of Lab. 1
model is shown after the registration. The inaccurate estimate of the 3D-NDT algorithm
negatively affects the registration result, whereas the proposed algorithm achieves satisfac-
tory alignment.

(a) (b)

Figure 13. Alignment of indoor scenes of Lab. 1 model: in (a) 3D-NDT and (b) UPS result.

6.7. Registration of Multiple Shots of Indoor Scenes

Multiple views of the indoor scene were then considered for cascade registration; here,
the models used were Lab. 1, Lab. 2 and House, and the registration methods were kept
the same as those of the previous experiment. Three different shots are available for each
model. As expected, the increase in the number of shots to undergo registration is reflected
in the time performance, as listed in Table 11. Nevertheless, it is to be stressed that once
again UPS was superior in terms of time performance and achieved good quality of pose
correction, as shown in Table 11. Because the different views have significant overlap, the
results suggest that the other approaches do not take profit as much as UPS does. Note the
bold markings in the table below, they indicate the best results for each metric.
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Table 11. Running time (in seconds) and RMSE (in meters) to align multiple partial shots of
indoor scenes.

Lab. 1 Lab. 2 House

Time RMSE Time RMSE Time RMSE RMSEavg

ICPp2pl 26.209 0.010 33.857 0.010 40.108 0.031 0.017
GICP 116.53 0.010 139.341 0.010 992.158 0.053 0.024

3D-NDT 131.26 0.054 289.184 0.013 905.530 0.054 0.040
UPSc f .A 47.075 0.010 5.532 0.010 85.812 0.035 0.018
UPSc f .B 10.321 0.010 5.434 0.010 20.792 0.035 0.018

6.8. Registration of Outdoor Scenes with Different Point Densities

This extensive study ended with a scenario particularly useful for instrumentalists,
in which it was considered very different spatial sampling rate, leading to source and
target clouds with different data densities, which is usually the case when acquisition
comes from different sensors. Hence, the task to be accomplished is to register sparse
and dense clouds corresponding to different shots of a given outdoor scene. For this
assessment, point clouds were chosen from the Gazebo Summer and UFC datasets, as
provided after [11] and homemade acquisitions, and once again single registration between
two views was performed.

It should be remembered that the target cloud is not a sampled version of the source
cloud at all; if this was the case, one could argue that it would be nonsense to evaluate
ICP-based techniques, since the step of correspondence check could easily (except for
trapping in local minima) give perfect matching for the entire ensemble of points of the
smaller set.

As it has been conducted so far, the time and quality of the pose correction are reported
in Table 12. It is worth mentioning the huge size of one of the shots from UFC dataset,
which amounts to nearly 1.2 million points; the other shot is about 828 k points in size.
Regarding running registration time, the results reveal that both configurations of UPS
performed better than their counterparts. This is also the case for the RMSE metrics. Note
the bold markings in the table below, they indicate the best results for each metric.

Table 12. Point cloud registration in the case of different cloud size.iew elapsed time (in seconds) and
RMSE (in meters).

Gazebo 1 Gazebo 2 UFC
153 k→ 67 k 155 k→ 66 k 1.2 M→ 828 k

Time RMSE Time RMSE Time RMSE RMSEavg

ICPp2pl 6.163 0.248 5.802 0.155 233.987 0.766 0.390
GICP 128.213 0.368 182.603 0.247 2980.82 4.183 1.599

3D-NDT 166.381 0.323 218.221 0.217 256.105 4.300 1.613
UPSc f .A 5.501 0.200 5.584 0.147 545.986 0.266 0.204
UPSc f .B 3.369 0.200 3.343 0.147 60.909 0.266 0.204

Globally, this last experiment suggests that UPS could be a choice for embedded
solutions even for outdoor 3D mapping from heterogeneous acquisition setups. For com-
pleteness, the registration for UFC dataset is depicted in Figure 14b.

Although the approach performed very well in a number of challenging scenarios, a
final investigation is worth giving an idea on its limits and when it fails. We stressed the
experiment on outdoor scenarios to cope with the case of low overlap between models and
significantly different densities. Here, point clouds acquired after UAV flights over a coal
stockpile in a thermal power plant were evaluated. As illustrated in Figure 15a, the source
and target models are very different in amount of points and so it is the subcloud size of the
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slices undergoing registration. As it can be seen in Figure 15b, UPS was not able to retrieve
the transformation, though it was mostly due to translation. This points to some limitations
regarding the difference in point clouds densities, which affects the partitions and their
ability to keep topological information. This directly affects the matching core; indeed,
point-to-point fails probably because it has centroids estimation and translation recover
as initial steps and, for clouds placed closely as in this case, falling into local minima is
likely. As a matter of fact, this last issue could motivate the use of automatic selection of
alignment core within the proposed partitioning approach.

(a) (b)

Figure 14. UFC scene alignment under different viewpoints and densities. (a) Generalized ICP.
(b) UPS.

(a) Initial pose and RGB.

(b) UPS

Figure 15. Stockpile scene bad-alignment under different densities and low-overlaping. In (a) initial
pose and RGB image and (b) alignment result.
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7. Discussion

For completeness and better comprehension of the extensive investigation of UPS, a
number of comments shall be made.

In comparison to the traditional ICP as well as to its variants [13,19] assessed in this
work, the improvement achieved in registration quality may accept two explanations: first,
the space of subclouds can offer better alignment conditions than the original clouds; in
addition to that, the existence of a micromisaligned-tuned RMSE to be met helps preventing
the ICP convergence to local minima. With regard to the computation efforts, the perfor-
mance achieved is associated with the fact that UPS operates in reduced-size space, which
was confirmed from the running time in the entire set of experiments.

In its classical implementation, ICP is dependent of an initial rotation guess, which
is an important limitation of the algorithm. On the contrary, the UPS approach does not
depend on that. To circumvent the mentioned limitation, some techniques rely on coarse
registration. As a matter of fact, the use of FPFH or even its use along with RANSAC have
been reported in the literature. Nevertheless, those solutions impose limitations on the
amount of relevant features necessary for proper surface description, as well as on the
conditions for convergence, afterall increasing the computational efforts [52,53]. This is
observed in Table 3, with FPFH + ICPp2pt outcome of 50.154◦, which represents a large
deviation from the 24◦ ground-truth, whereas UPS pose correction amounts to 24.039◦. In
addition, Table 2 brings important numbers in favour of UPS; for example, it reveals that,
for the Buddha model, UPSc f .B performs up to 171.131 times faster than FPFH+ICPp2pt.

Versatility is also an important feature of the algorithm. Starting with the micromisalign-
ment concept introduced here, it can be claimed that it simplifies the need for a RMSE-based
stop criterion, making it easier to tune for different scenes. In addition, it represents an
interesting adjustment resource for making the matching more or less strict, as imposed
by the application or by the computational resources available. It can be mentioned that
this concept can be applied to quality measures of pose correction other than RMSE as the
scientific community advances in this still open issue.

The existence of two operation modes also indicates its versatility. It must be said that
it favors adaptability to different applications. Indeed, partitioning along different axes of
source and target models (configuration A) allows for proper and automatic treatment of
scene registration in non-controlled environments where little or no previous information
is available. On the other hand, the use of configuration B favors scenarios in which data
acquisition of target and source point clouds differ roughly by only one degree of freedom,
thus making the most of its time performance.

The problem of partial registration is an important issue in the field, and UPS was able
to solve it to a good extent. In the literature, the existence of occlusion or self-occlusion has
been approached in different ways, as stated in [53], including the Four Point Congruent
Sets (4PCS) [51] and the recent proposition of Wang et al. [50] provided important tech-
niques to deal with that. In the investigation conducted here, 4PCS did not perform well
(see Figure 12) and, in addition to that, it requires the use of an overlapping ratio parameter.
Conerning the study presented by Wang et al. [50] on partial registration, good results for
the overlapping ratios of 25.18%, 27.39% and 31.67% were reported. In our investigation
of the overlapping ratio changing from 25% to 75% applied to the same models as in [50],
UPS also performed well. Moreover, in the present study, the more challenging situation of
input clouds corresponding to shots acquired from different perspectives was considered.

Concerning the registration of outdoor scenes, UPS performance was compared to
usual choices for that scope, which includes ICP point-to-plane [19], Generalized ICP [18]
and 3D-NDT [21]. These algorithms faced difficulties because the input models comprised
unbalanced shots (with point clouds different in size). From a quantitative perspective, 3D-
NDT showed limitations before the use of inputs from the UFC dataset, and the goodness of
alignment as measured by RMSE was about 16.165 times worse than that achieved by UPS
(see Table 12). Similar performance was found for Generalized ICP. Concerning elapsed
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time, UPSc f .B reached good registration sooner than 3D-NDT (4.205 times slower) and
much sooner than Generalized ICP (48.946 times slower).

In the same context of point clouds having different size, Tazir et al. [40] introduce
the concept of cluster-ICP registration by a normal-based selection of surface regions and
compare it to NDT, GICP and ICPp2pl . According to the results shown therein, CICP reaches
convergence shortly, with nearly half the iterations required by ICPp2pl . Instead of relying
on the calculation of normals (which is costy for dense clouds [54]) and making an a priori
selection of local regions good enough for global registration, UPS assumes that knowing
in advance the best region is not a must. Indeed, amongst the subclouds generated after
the partitioning procedure, anyone can be a good candidate; UPS then lookup for it as long
as the quality criterion is not met. The simplicity of such an a posteriori check of goodness
revealed to be more than enough for achieving remarkable matching efficiency in several
scenarios. Comparing it to the same algorithms as in [40] for the UFC dataset pointclouds,
UPS performed at least 4 times faster. From the above mentioned, UPS is simpler and does
at least as good as CICP.

To provide a view-at-a-glance about the comparison to the literature, in Table 13 we list
some of the issues mentioned as well as some other important aspects to consider in point
cloud registration along with the ability of each algorithm to deal with them. In the table,
“×” means that it is not satisfied and “�” means that that criterion fits the application.

Table 13. Qualitative comparison of algorithms for point clouds registration. Note: n.a. stands for
not applicable.

ICP
[13,18,19]

NDT
[21]

4PCS
[51]

FPFH
app.
[52]

Go-ICP
[6]

CICP
[40]

Wang
[50]

UPS
(cf. A)

(1) Independent of prior
information × × × � � � � �

(2) Independent of
coarse-alignment × × n.a. n.a. � � × �

(3) No need for sampling × × × × × � � �

(4) No performs of
registration in feature space � � × × � � × �

(5) Robust to loss
of surface details � × × × × � × �

(6) Multi-scenario scope × × × × × × × �

Continuing the discussion, now about the proposal of this work, it should be empha-
sized that the use of partitions itself is a concept and, as such, it can be adapted to other
registration nuclei; it is therefore left for future work the adoption of techniques other than
ICP. Furthermore, the procedure for the selection and composition of subclouds may be an
object of future investigation.

Indeed, as presented here, UPS creates partitions obtained after sectioning the point
clouds into contiguous slices of a given axis, with each of them being considered (in pairs,
Sj and Tk, and sequentially, j = k = 1, 2, 3...) as inputs to the UPS core. Although this
simple configuration was able to reach and overcome the performance of most algorithms
assessed, other choices concerning the way the pairs Sj and Tk are taken can be investigated.
In other words, it is to be analyzed the occasional positive effects that different ways of
associating the pairs Sj and Tk may have on the registration performance. For example,
taking Sj and Tk in a nonsequential manner would lead to attempted registration in non-
contiguous regions of point clouds, what could be guided by the adoption of different
principles to span the given axis. Part of the motivation for that is associated with the
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local properties of the subclouds; if a certain region is not a good candidate for global
registration (for example, ambiguity), its vicinity is likely to be a bad choice as well, and
hence, some iterations could be saved if the algorithm properly jumped out of that region.
The same feeling for non-contiguous spanning can be extended to augment the subclouds
by merging non-contiguous slices. These speculations on subclouds composition may
require adjustments in block (2) of the pipeline in Figure 3.

Finally, the way the partitioning has been conducted so far can be further investigated,
and the algorithm may evolve into a multi-axial partitioning strategy (MPS), meaning
that simultaneous cut-sectioning along the three principal axes may be considered (and
not along one alone). In this hypothetical approach, the subclouds can be formed by
combining the partitions along the three orientations and, ultimately, the concept could
be extended to consider other generically oriented axes. This suggestion would, in turn,
require adaptations in block (1) of the pipeline shown n Figure 3.

For final remarks, it is important to mention that the existence of a tradeoff between
the amount of subclouds and the running time was out of the scope here. In addition,
the interesting problem concerning the size of the input clouds and how it can be used to
automatically determine a reasonable number of subclouds has been neglected so far. This
is an important issue, since the essence of the rationale behind the partitioning concept is
that the generated subclouds can individually represent the full clouds, thus allowing for
efficient rigid transformation retrieval. By putting these issues as optimization problems
and solving them, it is expected that useful insights about the existence and identification
of regions-of-interest able to favor global registration of arbitrary scenes will come to light.

8. Conclusions

In this work, we introduced an approach for point cloud registration relying on
subcloud space, that is, one containing partitions of the original 3D models. Its use along
with ICP algorithm was thoroughly investigated based on extensive experiments. The
proposed technique drives the conventional ICP into a new use because an outer level of
iterations is considered.

A number of outcomes can be drawn:

• the outer level of iterations favours the correspondence step of ICP and reduces
computation efforts: this is because k-registration steps of ( N

k )-sized point clouds take
less time than one registration of N-sized clouds.

• The existence of two operating modes provides flexibility to the approach, widen-
ing the range of possible applications: configuration A is adequate for situations
in which little or no information about the scene is provided, as can be the case of
huge disorientation between target and source and/or arbitrarily disoriented samples,
whereas configuration B suits non-severe disorientation scenario and high-overlapping
samples, as can be the case of applications assisted by progressive scene acquisition.

• The stop criterion based on the micromisalignment concept introduced here performed
well, showed to be a reliable measure of quantitative assessment of registration good-
ness and it is one major contribution of this study to the scientific community.

• In terms of time performance, comparative analysis revealed impressive results in
favour of UPS: except for a few cases in which it was beaten by ICP point-to-plane,
UPS was always faster than the other approaches by about 3 times at least. In some
cases, it was 300 times faster.

• In terms of registration quality, UPS performed better than many of the counterparts.
In this regard, using RMSE as a metrics for registration quality, UPS was 8 times better
than 3D-NDT and GICP in outdoor scenario and 10 times better than Sparse-ICP,
Go-ICP and FPFH + ICP in a study of robustness to Gaussian noise.

Summing up, the results obtained surpassed many of the most commonly used
registration techniques, as evidenced by a consistent variety of experiments in a wide
range of scenarios. The diversity of the investigated scenarios, whether in quantity or at
the level of challenge imposed by the scenes, as well as the comparison of the algorithm
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to counterparts that are recent and relevant according to the literature were useful to
demonstrate the generalization of the proposed method.

From the performance analysis in time and quality of pose correction in the different
experiments, it can be stated that UPS is a flexible choice for use in robotics and 3D computer
vision applications, because it adapted well to the huge variety of scenes, from simple
pairwise registration to more challenging outdoor matching of clouds with significant
differences in size and overlap ratio.

In conclusion, the algorithm was able to circumvent typical limitations of traditional
ICP, such as the subjection to ambiguous registration and the falling into local minima, yet
offering remarkable time performance compared to the literature counterparts.
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