Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/66495
Tipo: | TCC |
Título: | Aprendizagem de máquina para previsão de predisposição ao medo do crime |
Autor(es): | Fernandes, Lucinara Kecia Silva |
Orientador: | Moura Júnior, James Ferreira |
Palavras-chave: | Aprendizado de Máquina;Dados Sociais;Knowledge Discovery in Databases - KDD |
Data do documento: | 2022 |
Citação: | FERNANDES, L. K. S. Aprendizagem de máquina para previsão de predisposição ao medo do crime, 2022. Monografia (Graduação de Engenharia da Computação) - Campus de Sobral, Universidade Federal do Ceará, Sobral, 2022. |
Resumo: | Diante do quadro de violência vivenciado pela população brasileira, fatores característicos como aspectos sociodemográficos e propensão à posições autoritárias impactam na predisposição ao medo do crime por parte dos cidadãos. Perante essa conjuntura, o Aprendizado de Máquina se mostra uma ferramenta útil na análise dessas relações, por já ser um artifício cada vez mais aplicado à dados sociais no contexto de predição. Com base nisso, o objetivo deste trabalho está na verificação dos melhores modelos para análise de dados e técnicas de Aprendizado de Máquina (AM), nos quais os níveis de indicadores de medo do crime são previstos, e na análise de quais atributos são mais relevantes para a previsão da predisposição ao medo do crime, utilizando o banco de dados da pesquisa intitulada “Medo da violência e o apoio ao autoritarismo no Brasil”. Coordenada pelo Fórum Brasileiro de Segurança Pública, os dados da pesquisa foram coletados em formato de questionário com assertivas de cunho sociodemográfico, relacionadas a situações de vivência como vítima de crimes e propensão ao apoio a posições autoritárias. Como metodologia de desenvolvimento, é abordado no trabalho a utilização do método Knowledge Discovery in Databases (KDD), partindo da análise dos dados coletados na pesquisa à disposição de simulações com 3 cenários de dados propostos e com combinações de classificadores, sendo eles Support Vector Machine (SVM), Random Forest (RF) e K-Nearest Neighbors (KNN). Ainda nas etapas do método, é realizada análise de atributos, com os algoritmos Sequential Forward Select (SFS) e Sequential Backward Selection (SBS), bem como aplicação da técnica de redução de dimensionalidade Principal Component Analysis (PCA). Em síntese, a melhor acurácia foi obtida utilizando os dados normalizados, o algoritmo SFS e o classficador SVM. Além disso, são observados como atributos mais importantes, a partir do cálculo dos coeficientes de Gini e Entropia, os relacionados a idade, escolaridade e índices sintéticos obtidos das escalas propostas pela pesquisa. |
URI: | http://www.repositorio.ufc.br/handle/riufc/66495 |
Aparece nas coleções: | ENGENHARIA DE COMPUTAÇÃO-SOBRAL - Monografias |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2022_tcc_lksfernandes.pdf | FERNANDES, L. K. S. Aprendizagem de máquina para previsão de predisposição ao medo do crime, 2022. Monografia (Graduação de Engenharia da Computação) - Campus de Sobral, Universidade Federal do Ceará, Sobral, 2022. | 1,28 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.