Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/66318
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMoura, Elineudo Pinho de-
dc.contributor.authorMelo Júnior, Francisco Erivan de Abreu-
dc.contributor.authorDamasceno, Filipe Francisco Rocha-
dc.contributor.authorFigueiredo, Luis Câmara Campos-
dc.contributor.authorAndrade, Carla Freitas de-
dc.contributor.authorAlmeida, Maurício Soares de-
dc.contributor.authorRocha, Paulo Alexandre Costa-
dc.date.accessioned2022-06-09T13:23:34Z-
dc.date.available2022-06-09T13:23:34Z-
dc.date.issued2016-
dc.identifier.citationMOURA, Elineudo Pinho de et al. Classification of imbalance levels in a scaled wind turbine through detrended fluctuation analysis of vibration signals. Renewable Energy, [s.l.], v. 96, Part A, p. 993-1002, 2016.pt_BR
dc.identifier.issn1879-0682-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/66318-
dc.description.abstractThis work proposes to identify different imbalance levels in a scaled wind turbine through vibration signals analysis. The experiment was designed in such a way that the acquired signals could be classified in different ways. A combination of detrended fluctuation analysis of acquired signals and different classifiers, supervised and unsupervised, was performed. The optimum number of groups suggested by k-means clustering, an automatic classifier with unsupervised learning algorithm, differs from the number of classes (or subsets) defined during the experimental planning, presenting another approach to the possible classification of vibration signals. Additionally, three supervised learning algorithms (namely neural networks, Gaussian classifier and Karhunen-Loeve transform) were employed to this end,classifying the collected data in some predefined amounts of classes. The results obtained for the test data, just a little different regarding the training data, also confirmed their capability to identify new signals. The results presented are promising, giving important contributions to the development of an automatic system for imbalance diagnosis in wind turbines.pt_BR
dc.language.isoenpt_BR
dc.publisherRenewable Energypt_BR
dc.subjectWind turbinept_BR
dc.subjectImbalancept_BR
dc.subjectVibration analysispt_BR
dc.subjectDetrended fluctuation analysispt_BR
dc.subjectPattern recognitionpt_BR
dc.titleClassification of imbalance levels in a scaled wind turbine through detrended fluctuation analysis of vibration signalspt_BR
dc.typeArtigo de Periódicopt_BR
Aparece nas coleções:DEMM - Artigos publicados em revista científica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2016_art_epmoura.pdf1,05 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.