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This work proposes to identify different imbalance levels in a scaled wind turbine through vibration
signals analysis. The experiment was designed in such a way that the acquired signals could be classified
in different ways. A combination of detrended fluctuation analysis of acquired signals and different
classifiers, supervised and unsupervised, was performed. The optimum number of groups suggested by
k-means clustering, an automatic classifier with unsupervised learning algorithm, differs from the
number of classes (or subsets) defined during the experimental planning, presenting another approach
to the possible classification of vibration signals. Additionally, three supervised learning algorithms
(namely neural networks, Gaussian classifier and Karhunen-Loeve transform) were employed to this end,
classifying the collected data in some predefined amounts of classes. The results obtained for the test
data, just a little different regarding the training data, also confirmed their capability to identify new
signals. The results presented are promising, giving important contributions to the development of an
automatic system for imbalance diagnosis in wind turbines.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A better understanding about the fields of global warming and
climate change is the way for renewable energy sources to become
a main concern for governments and international organizations
and institutions. Therefore, the search for new alternative sources
of energy has become the key to ensure a sustainable future. In this
scenario, it is well stablished that renewable energy sources pro-
vide substantial benefits. Among various renewable energy sources
such as solar, biomass, geothermal and hydraulic, wind stands out
as a clean, efficient and promising alternative with little environ-
mental impact.

Improvements on wind turbines reliability and performance are
essential. Although potential problems can occur in any component
of a wind turbine, the most common failures are presented on its
rotor blades or tower. So, special attention must be paid to the
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mechanical effects of wind action on rotor blades to avoid excessive
stresses, instability, fatigue and rupture. The harmful consequences
from mechanical vibrations have been extensively studied by
various researchers worldwide, e.g. Refs. [2,13]. Over the years, vi-
bration analysis has been performed by using signal processing, e.g.
Refs. [7,14,15,23,27,33,34,36,46].

One of the major concerns regarding a wind turbine is the
negative effect of vibrations on its performance. Therefore, many
researchers have paid much attention to mitigating and controlling
vibrations on wind turbines [47]. investigated the performance of
roller dampers for mitigation of edgewise vibrations on rotating
wind turbine blades and his results indicated that the proposed
damper could effectively improve the structural response of wind
turbine blades [16]. showed a new active control strategy designed
and implemented to control the in-plane vibration of large wind
turbine blades which, in general, is not aerodynamically damped. It
was concluded that the use of the proposed new active control
scheme significantly reduces the in-plane vibration of large, flexible
blades.

A nonlinear dynamic model was developed by Ref. [48] to study
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the torsional vibrations of wind turbine gearboxes having two
planetary gear stages and one parallel gear stage. Many factors
acting on the dynamic behavior of wind turbine gearbox compo-
nents are considered by employing the numerical integration
method. It was found that the external excitation is the most
important influence on the torsional vibrations of wind turbine
gearbox components.

In their work [40], proposed a model to control wind turbine
vibrations by changing the rotational speed of the blades and a
multi-modal mathematical model describing the dynamics of
flexible rotor blades and their interaction with the turbine tower, all
being formulated by using a Lagrangian approach. An active
controller based on active tendons was proposed to mitigate wind-
induced edgewise vibrations.

Feature extraction and fault diagnosis via vibration analysis is a
common and effective mean for wind turbine condition moni-
toring, specially on rotation parts, as well as blade-cabin-tower
coupling system [24]. calculated tower natural frequency based
on the coordinate system. Wind-induced random vibration was
analyzed and total wind force on blade-cabin-tower coupling sys-
tem was determined.

[1] used a novel approach called Empirically Decomposed
Feature Intensity Level (EDFIL) to identify the fault severity caused
by intentionally produced cracks of different sizes in a wind turbine
blade. He also showed that common vibration analysis techniques,
such as Kurtosis, Root Mean Square, Crest Factor and Fast Fourier
Transform (FFT) are not useful tools to diagnose wind turbine blade
defects. As it was explained, more advanced monitoring techniques
are required to deal with noise-contaminated and non-stationary
signals of a wind turbine.

A combination of Detrended Fluctuation Analysis (DFA) and
pattern recognition techniques was successfully applied to fault
diagnosis in gearbox [12] and bearing [ 11] under various conditions
of frequency, load and severity or kind of fault. Inspired by these
previous works and taking into account the relevance of the above
discussed subjects, this study performs a similar approach. The idea
is to investigate whether this approach can be useful in the clas-
sification of vibration signals acquired from a scaled wind turbine
and to evaluate the performance of different pattern recognition
techniques.

2. Experimental setup

In this work, a set of blades with NREL S809 profile, specifically
developed for use in horizontal-axis wind turbines (HAWTs), was
designed by a in-house developed software [9], which uses a
methodology of design from Ref. [3] to calculate the blades pa-
rameters, such as the chord and twist distribution, as shown by
the images on Fig. 1. The blades were manufactured using a ster-
eolithography technique, commonly called 3D printing, which
guarantees the production of balanced blades, and after a pol-
ishing process the roughness can be negligible. Three blades were
built, each with 0.20 m length, 15 g and tip speed ratio A equal to
seven.

The experiments were carried out on a bench composed of a
wind turbine shaft and a three-bladed rotor, a torque transducer
and an electric motor, as shown in Fig. 2. This bench was located in
an open circuit subsonic wind tunnel approximately 6.5 m long
with a test section of 0.50 x 0.50 m, powered by a 1.49 KW (2 hp)
exhauster. To guarantee that the blades work in their tip speed ratio
(A) of project, the rotor remained at a constant rotation of 900 rpm
and the mean wind velocity at the test section was 2.71 m/s with
standard deviation of 0.035 and turbulence level below 2%. The
blockage ratio found in the test section was 50.77% and the
blockage factor required for correction of Cp (power coefficient)

calculation was 0.84 [5].

The aim of the present work is to verify if the approach suc-
cessfully applied in previous fault diagnosis works can be useful to
distinguish unbalanced levels of scaled wind turbine. Given that,
the following main work conditions were regarded:

1. Imbalance on a single blade by mass addition. This condition
reproduces several situations, such as accumulated dirt over a
blade or any object attached to it. This condition was simulated
by mass addition (0.5, 1.0 and 1.5 g) at the tip of only one blade.

2. Imbalance on a single blade by lacking mass. This condition
reproduces the possibility of a broken blade or excessive weight
loss on a blade. This condition was simulated by mass addition
(0.5, 1.0 and 1.5 g) at the tip of two blades.

3. Balanced system. This normal condition can be obtained in two
different ways: when all blades are of same mass and their rotor
is balanced, or by using only the shaft. These configurations also
help us to certify the balance of the system.

In addition, a question can be formulated concerning the most
adequate amount of classes to be used for this setup. Three groups
as the main work conditions, as well as seven (and even eight)
groups as subsets are possible answers. For all test conditions, rotor
remained at a constant rotation of 900 rpm.

Signals were captured through a Bruel & Kjaer accelerometer,
model 4381V, which is located in the shaft bearing closer to the
blades, as shown in Fig. 2. The sensor is coupled to a Bruel & Kjaer
amplifier, model 2692. For band filtering, 1.0 Hz (high) and
100.0 Hz (low) were chosen as limits. Afterwards, a Tektronix
oscilloscope, model 1062 TBS, was used to record signals. Each
signal was composed of 500 data points acquired with a sampling
rate of 250 Hz (250 samples/s). For all tested conditions, rotor
remained at a constant rotation of 900 rpm. For each balanced
level, 50 vibration signals were captured, resulting in a dataset of
400 vibration signals. Fig. 3 shows a representative normalized
vibration signal.

The Nyquist sampling theorem affirms that, to be possible to
recover all spectral components of a periodic waveform, the sam-
pling rate must be at least twice the highest waveform frequency.
So that, the higher the sampling rate the higher the recorded fre-
quencies. With this in mind, and considering that the rotation
frequency of wind turbine is 900 rpm (15 rps), the minimum
sampling rate to record these signals should be 30 Hz. However,
vibration signals are not a single periodic waveform and they have
upper spectral components. In addition, the sampling rates offered
by oscilloscope is limited. Some of the sampling rates offered are
25, 50, 125, 250 Hz and go on. The first one do not satisfy the
Nyquist sampling theorem. In order to avoid missing of those
important spectral components to vibration signal analysis, they
were recorded at 250 Hz. On the other hand, the recording of fre-
quency beyond the frequencies observed in Fourier spectrum of the
signal is unnecessary.

3. Detrended fluctuation analysis
Detrended Fluctuation Analysis, or DFA [31], aims to improve
the evaluation of correlations in a time series by eliminating trends

in the data. The method assumes a profile that consists of an in-
tegrated series y;

J
yi=> ui— () (1)
i1

where (u) is the overall average of the original series,
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Fig. 1. Chord and twist distributions.

Fig. 2. Scaled wind turbine and measurement apparatus for a wind tunnel test.
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Fig. 3. Normalized vibration signal obtained from a scaled wind turbine with a single
unbalanced blade at a rotation frequency of 900 rpm on a wind tunnel.
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For each profile, DFA involves performing a polynomial data
fitting within intervals of size 7 and evaluating the corresponding
detrended fluctuations defined as the difference between the in-
tegrated series y;j and the local trend y; . In this work it was applied a
first-order DFA scheme which means a first-degree polynomial. A
curve of the average fluctuation as a function of size interval 7 is
built by repeating this procedure for many interval sizes. Non-
overlapping intervals are a common practice. However, since the
series length N is not a multiple of the interval size, losing a small
part at the end of the profile is likely to occur. To get over this
problem, the solution firstly proposed by Ref. [35] using over-
lapping time windows was applied. Thus, for each interval I the
variance of the residuals was calculated as

R =22 (yi—yi-)z 3)

il

Finally, the covariance F(7) was calculated by summing over all
overlapping N — 7 + 1 windows of size 7.

FIn = g SA) 4)

From the values of logio(F(7)), vectors whose components
correspond to the average fluctuation associated with suitably
chosen interval sizes can be defined. In this work, window sizes
ranging the integer part of the integer powers of 21, i.e. from 5 to
250, were used. In this sense, each vector had 24 components and
the values of 1 corresponded to the values in
(5,6,7,8,9,11,13,16,19,22,26,31,37,44,53,63,74,88,105,125,149,177,210,
250). (see Fig. 4).

Given the length of signals and the sampling rate used during
their recordings, each signal corresponds to a time series with just
2 s. Although wind turbines do not operate at steady state condi-
tions or uniform wind regimes, at short time scales it is possible to
consider a quasi-steady state.

Furthermore, a number of results indicates that DFA, a tool
originally developed to differentiate between local patchiness and
long-range correlations in DNA sequences [32], can be quite useful
in the study of non steady state time series such as characterization
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Fig. 4. Representative DFA curve obtained from signal displayed on Fig. 3.

of cast iron microstructure based on ultrasonic backscattered sig-
nals [10,26], classification of welding defects based on TOFD ul-
trasonic signals [42], gear fault diagnosis based on vibration signals
[12], monitoring of metal transfer modes in mig/mag welding
based on voltage and current time series [43] and characterization
of microstructural changes in coarse ferritic-pearlitic stainless steel
based on magnetic Barkhausen noise and magnetic flux signals
[29].

This type of analysis has also been widely used in the study of
random non-stationary series, ranging from seismic [41] and
climate data [22] to financial data [4] and in the study of different
music genres [21], as well as long-term correlations in wind speed
(citegovindan2004). Another previous work goes as far as of
investigating the impact of the wake effect upon the steady-state of
a wind farm [17].

4. K-means clustering

As a new approach, not found in the literature for this type of
problem, the vectors resultant from DFA were grouped using
clustering techniques. In this study, we called vector each curve
with values of logg(F(7)) obtained after a DFA of vibration signals,
as the one portrayed in Fig. 3. Each curve is represented by a vector
of dimension 24 (one curve with 24 points), or geometrically, by
one point in a space of dimension 24. These vectors constitute the
input of k-means.

Clustering is an unsupervised approach in which, given a data-
set, it aims to create groups, which are subsets of the initial dataset.
It is expected that elements of a same group are similar and ele-
ments of different groups are as different as possible. In multidi-
mensional datasets, the concept of similarity between two points
can be built based on the dissimilarity, which can be set as the
distance between them. Thus, the closer the points, the more
similar they are.

For the clustering approach, the k-means method was applied.
K-means is a partitional clustering algorithm widely known in
machine learning. Partitional clustering aims to directly decompose
the dataset into disjoint clusters by optimizing a cost function (or
criterion function), which emphasizes the desired structure of the
data. For example, using different distance norms (Euclidean,
Manhattan, Chebyshev) may result in different cost functions, thus
yielding different resulting clusters [39].

K-means can be applied when the amount of clusters to be

generated is already defined. In this sense, some clustering evalu-
ation techniques can be applied to decide how many clusters
should be used. Two indexes were evaluated to help this decision:
Silhouette and Davies-Bouldin. Both indexes try to measure how
well different clusters are separated from each other and how well
elements of a same cluster are grouped.

K-means idea was first introduced by Lloyd in 1957, though it
would only be published years later [25]. This iterative method
represents each cluster by a single point called centroid, and de-
cides to which cluster each data point belongs by checking the
distance from the data point to each centroid, selecting the smaller
distance. The use of centroids to compare distances instead of
comparisons between each pairs of points in the dataset reduces its
complexity, while having good resulting clusters [37].

Consider X;.p a p-dimensional dataset with n samples and
suppose we grouped these data in k groups S$1,Sy,...,Sk. Based on the
idea of choosing the smaller distance from a point to a centroid, k-
means’ cost function evaluates the clustering by checking the dis-
tances from each element to the centroid of the cluster to which it
belongs via the following cost function:

k n

o-3

LIUDIZJ (Ci, X]) (5)
i=1 j=1
where ;=1 if x;€S; and u;;=0 otherwise, and D(c;,x;) is the
squared p-dimensional Euclidean distance between ¢; and X;. K-
means, then, is an iterative method for associating every data point
Xj, j=1,...,n, to the cluster with the nearest centroid, and updating
every centroid ¢;, i=1,...,k, as the mean of the cluster S;. The
convergence can be checked by analyzing the changes between
configurations, in such a way that if there's no significant change
between two consecutive iterations of the algorithm then conver-
gence is achieved.

Despite of its good results and small complexity, the basic k-
means algorithm may outcome some problems. First, while setting
the initial centroids, a somewhat distant centroid (from the data-
set) can be set. This may result in an empty cluster, and then the
algorithm would be grouping in k—1 groups instead of k. To solve
this problem, k different points from the dataset will be chosen,
implying that each group will contain at least one element of the
dataset.

Another problem is the previous requirement of the groups
quantity k. This may be troublesome when one is not sure about
how many groups should exist. There are some techniques which
can be applied to the dataset that are able to indicate the number of
clusters. In this paper, the Silhouette and Davies-Bouldin (DB) in-
dexes are applied.

The idea used within both Silhouette and Davies-Bouldin in-
dexes is that a cluster is considered “bad” if it's very close to another
cluster (meaning that the clusters could be put together) or if its
elements are too spread (meaning that some distant elements
could belong to another cluster). That is, if a cluster is distant from
other clusters and if it has dense groups of elements, it can be
classified as a "good” cluster.

Both indexes are applied over a configuration (resulting from an
execution of a clustering algorithm) to analyze how good this
configuration is. Their output can be used to choose the optimal
number of clusters to use on a clustering algorithm.

Silhouette index was introduced by Ref. [38]. This index is
applied over a configuration to evaluate how well every element is
individually grouped, and it uses the index of every element to
evaluate the configuration. Using the above procedure, for every
data point Silhouette index checks how near the point is from the
elements of its group, and how near the point is from elements of
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its neighbour group (the nearest cluster from the point that isn't its
own cluster).

Consider a single point X. Let a(x) be the mean of the distances
from x to each other element from the same cluster as X. Let b(x) be
the mean of the distances from X to every element from X's
neighbour cluster. Let s(x) be the Silhouette index of X, defined as:

__bx) —ax)
~ max(b(x),a(x))

s(X) (6)

Clearly we can see that —1 < s(x)<1. Silhouette considers higher
values of b(x) as a signal of good configuration, while considers
higher values of a(x) as a signal of bad configuration. One can read
this by checking that a point close to other elements of its cluster is
a well grouped element, and a point distant from its neighbour
cluster is well separated from other clusters. Thus, higher values of
s(x) mean that the element is well grouped, while lower values of
s(x) mean the element isn't well grouped, regardless of the way this
clustering was established.

Based on a dataset X, and the configuration (resulting from a
clustering algorithm), every s(x;),j = 1,...,n, is computed to evaluate
the configuration by evaluating the Silhouette index SI as the mean
of the Silhouette indexes s(x;). Therefore —1 < SI < 1, where higher
values are signal of good configurations and smaller values indicate
bad configurations.

The Davies-Bouldin index (or DB index) was introduced by
Ref. [8]. This index is also applied over a configuration, but it cal-
culates the index of every cluster to evaluate the configuration. For
every cluster, it can be analyzed through the DB index by the mean
of the distance from a cluster's centroid to its elements and by the
distance between each pair of centroids. DB index also uses cen-
troids to calculate the distances, which reduces its computational
complexity when compared to Silhouette.

Consider a hypothetical configuration. Let ¢; be the centroid of
the cluster S;. Let d; be the mean of the distances between ¢; and
every other point belonging to S;. Let d(c;c;) be the distance be-
tween ¢; and ¢;. Let DBI be the Davies-Bouldin index of the config-
uration, defined as:

k
DBI=1 3" max <M> )
k 17w d(ci,cj)

Through Davies-Bouldin, the configuration can be evaluated by
using the distances both within and between clusters. Using the
same idea of Silhouette, a smaller within-cluster sum of distances
means its elements are well united, which is an indicative of a good
cluster. Higher distances between centroids of different clusters are
also an indicative of a good cluster, since it shows that clusters are
well separated from each other.

Therefore, for every cluster S, DB index looks for another cluster
S' that maximizes the spreading of both clusters while minimizing
the distance, thus selecting the cluster that could be produced by
errors in the clustering process. Hence, smaller values of DBI indi-
cate better configurations.

The acquired dataset can be brought together in different ways,
so both Silhouette and DB indexes were used to decide in how
many clusters the dataset should be grouped. For this task, k-means
was used as the clustering algorithm. With the algorithm's output
vector k, we choose the optimal value of k as the amount of clusters
that was most recommended as optimal. The concept within the
algorithm is to get a good clustering result from k-means, and
calculate the Silhouette and Davies-Bouldin indexes over it. K-
means was run 100 times to guarantee that a good clustering might
be achieved. Then, this process was repeated for each number of
clusters in (2,...,20), resulting in heaps of indexes.

The optimal value for each index (the maximum value for
Silhouette and the minimum value for Davies-Bouldin) was selected
and the minimum suggested number of groups was picked between
the two optimal as the recommended number of clusters. The choice
of the optimal value of k was made based on the approach presented
on Algorithm 1. Choosing either minimum or maximum values be-
tween the optimals gives approximately the same result. To ensure
the precision of the result, this test was repeated 1000 times,
selecting 1000 optimal numbers of clusters. In all tests, the optimal
(recommended) number of classes returned was 4.

Algorithm 1: Choice of the optimal number of clusters

Data: dataset X« (our dataset consists of n = 400 samples with p = 24 dimensions each)
Result: vector k with occurrences of optimal number of clusters

1 set kyax as | Vnl

2 set k as a k,,,,-dimensional vector of zeros, used to check how many times the amounts of clusters are

suggested as the optimal
3 for it < 1 to 1000 do

4 set SI and DB as vectors to store the indexes for k = 2, ..., k. for iteration it

5 for k;; < 2 to k,,u, do

6 run 100 full executions of k-means, grouping X in k;, clusters and collecting 100 resulting
configurations

7 from the 100 configurations, select the one that minimizes the value of k-means cost function

8 compute the Silhouette and Davies-Bouldin indexes for the selected configuration, resulting in two
indexes for k;; clusters to be stored in SI and DB

9 end

10 based on the maximum value in SI and the minimum value in DB, select kpp . and ks op; as the number

of clusters considered optimal by each method
11 select the optimal number of clusters k,,, as min (kDBl,p,, kg vat)
12 increment K[k, ], meaning k,,; was pointed once more as optimal

13 end
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Groups are partitioned according to a Voronoi diagram.

In Fig. 5, PCA (Principal Component Analysis) was applied to
reduce the original 24-dimension dataset in a 2-dimension one,
making it easier to understand a plot of the dataset. PCA was
introduced by Ref. [30] and the method aims to remove correlations
on a dataset and, optionally, to reduce the dimension of the system
while keeping a percentage of its information. In the plot presented
by Fig. 5, the reduction was carried out from 24 to 2 dimensions and
kept 99.26% of the information from the original dataset.

Based on the optimal value of k, we then executed k-means to
group the data in k=4 groups. Each of the 4 centroids were
initialized as different points out of the dataset. As the resulting
clustering is affected by the choice of the initial centroids, some of
them can be different than others, so it was chosen the most
repeated configuration over 100 executions of k-means (which is
also the configuration with the minimum value for k-means’ cost
function). The groups are as presented in Fig. 5.

For the following analysis, for the sake of simplicity, consider the
nomenclature presented in Table 1.

The optimal configuration shows 4 groups, where k-means kept
C1 as G1 and grouped C2, C3 and C6 in G2, C4 and C5 in G3, and C7
and C8 in G4. G1 is a group with a single, slightly heavier blade
when compared to the others. G2 is a group representing a scenario
with either one or two much heavier blades. G3 is a group with two
slightly heavier blades when compared to the last one. G4 is a group
representing the balanced scenario, either with 3 balanced blades
or with no blades (shaft only).

We can then analyze how k-means detected groups by checking
the classes of each group. G4 is a group of balanced scenarios,
resulting in the smallest vibration. G1 is a group with a lightly

Table 1
Nomenclature of classes of imbalance.

Class Added mass Blade weight percentual

C1 0.5 g to one blade 3.33%
Cc2 1.0 g to one blade 6.67%
c3 1.5 g to one blade 10%
Cc4 0.5 g to two blades 3.33%
Cc5 1.0 g to two blades 6.67%
Cc6 1.5 g to two blades 10%
Cc7 three blades balanced (no mass added) 0%
c8 shaft alone 0%

unbalanced scenario, where one of the blades is slightly heavier
than the others, resulting in some more vibration. G3 is a group
with a lightly unbalanced scenario where two of the blades are
slightly heavier than the other, resulting in some vibration but
being more stable than G1, probably due to the difference of weight.

Meanwhile, G2 is the group of most unbalanced scenarios,
where big weights are applied to the blades (one blade in C2 and
C3, and two blades in C6), resulting in higher vibrations when
compared to other groups. It is worth pointing that G2 includes C2
but doesn't include C5. One possible explanation to this fact resides
on the weight difference of the system, which results in better
stability.

With the purpose of verifying the optimum number of classes
and to make an automatic classification, a cluster analysis tech-
nique was employed. This can be useful when the classes of input
data are not known and consequently the training procedure is not
possible. Besides, since the number of classes and to which class
each signal belongs are well known, supervised classifiers can also
be employed.

5. Supervised classification

Three pattern recognition techniques (namely neural network,
Gaussian discriminant and Karhunen-Loeve) were used to classify
the vectors obtained from the DFA of vibration signals according to
different work conditions. A brief discussion of each technique is
presented below. A similar approach was successfully applied to
fault diagnosis of both gearbox [12] and bearing [11], to charac-
terization of cast iron [10], and modeled microstructure from ul-
trasound signals [28].

5.1. Neural network

The basic unit of a neural network is the neuron, which is a
mathematical operator that performs a linear combination of the
inputs. Before this weighted sum is sent to an activation function, a
bias may be added to it. Then a neuron can be represented as:

Y—ti)(i:WiXier) (8)

i=1

where ¢ is the activation function, x; are the input data, w; are the
synapse weights and b is the bias. This approach can be used to
classify linearly separated data. However, several processes have
nonlinear nature. Neurons disposed in layers, with each layer fully
connected to the next one, compose a multilayer perceptron
[18,44]. Multilayer perceptrons are able to classify nonlinearly
separated data, but any nonlinear input-output mapping can be
obtained by using a single hidden layer [6,19,20].

The estimation process is accomplished in two main steps. First,
the network is trained with a set of input and output pairs. During
this crucial stage, the weights of neurons are adjusted. The most
common training method used is the backpropagation algorithm,
which attempts to minimize the output error. Training is followed
by the testing step, where the network is exposed to new data.

In this work, a neural network was implemented by a multilayer
perceptron composed by an input layer with 24 neurons (the
dimension of our vectors), one hidden layer and one output layer.
The number of neurons in both hidden and output layers was
changed according to the predefined number of classes, such that
each class is distinguished by one neuron on the output layer and
the number of neurons in the hidden layer is calculated by the floor
of the mean between the number of dimensions of the data and the
amount of classes to be used.
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Fig. 6. Basic sketch of a neural network.

In an attempt to answer the starting question introduced in the
experimental setup, the numbers of classes were chosen as 3 and 7,
resulting in a hidden layer with 13 and 15 neurons, respectively.
The connection weights between neurons in contiguous layers are
adjusted so as to minimize the mean squared error between the
desired and the actual outputs, according to the backpropagation
prescription. Logistic sigmoid activation functions were used in all
the neurons. In all cases, the input vectors (DFA results) were
presented 1000 times, i.e., 1000 epochs of training were conducted.
A basic sketch of a neural network is shown on Fig. 6.

5.2. Gaussian classifier

The Gaussian function is also a method that uses a supervised
learning. This function works by classification of the d-dimensional
vectors and training by supervised learning [45]. The general p-
dimensional Gaussian density function for a given class i is given
by:

L myTs T x - my) )

7 €Xp 5

2

Table 2

Average performance of the classifiers when applied over vectors built from recor-
ded signals to classify the data in 3 classes, calculated over 100 sets of training and
testing vectors. For each column, numbers indicate the percentage of vectors which
were correctly classified; values in parenthesis correspond to the standard de-
viations; the values after '# registers average misclassification rates (e.g. for class 1,
#2:0.57 indicates that 0.57% of vectors belonging to class 1 were misclassified as
belonging to class 2).

Class Neural network Gaussian Karhunen-Loeve
Training Testing Training Testing Training Testing
1 100 99.43 100 98.87 100 100
(1.25) (1.71)
#2:0.57 #2:1.13
2 100 100 95.65 94.93 99.90 99.53
(1.72) (3.96) (0.27) (1.16)
#1:435 #1:5.07 #1:0.1 #1:0.47
3 100 100 100 100 100 100
Overall average 100 99.79 98.37 97.68 99.96 99.83

where x denotes an input vector generated during the detrended
fluctuation analysis, S; is the covariance matrix associated to class i
and m; is the mean vector, also associated to class i, which in turn
are given respectively by

-l n

S:Ei;(xi—m)(xi—mf (10)
and
m:%;xi (11)

where n is the amount of d-dimensional vectors X; associated to
class i and T denotes the transpose vector. When x=m,; the
gaussian density function has its maximum value and the increase
of the distance between x and m; decreases the output of the
function.

Using the training set, the mean and the covariance of the
gaussian function are calculated for each class. Finally, using the
testing set, the performance of the gaussian classifier in discrimi-
nating the vectors could be evaluated. The classifier discriminates
each datum by associating each vector to the class with the highest
output, obtained from the different gaussian density functions
associated to each class.

As the vectors produced by the DFA of vibration signals are
selected to define the sets of training and testing, a discussion about
the success rate of Gaussian classifier in identification of each
unbalancing level studied is made below in Section 5.4.

5.3. Karhunen-Loeve transformation

For the Karhunen-Loeve transformation (KLT), at first, the pro-
jection of training vectors along the eigenvectors of the intra-class
covariance matrix Sy, is defined as [45]:

ne L

Sw=13"3 i - my) (x; - my)”

k=1 i=1

(12)

where n is the number of samples of the dataset, X; is the column
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Table 3

Average performance of the classifiers for the generation of 7 classes. Classifiers' results are presented as in Table 2.

Class Neural network Gaussian Karhunen-Loeve
Training Testing Training Testing Training Testing
1 100 100 100 100 100 100
2 100 100 100 97.80 100 100
(4.14)
#1:0.3 #4:1.9
3 100 97.40 100 99.20 100 100
(4.39) (3.06)
#6:2.6 #6:0.8
4 100 96.10 100 100 100 100
(6.15)
#5:39
5 99.67 96.50 100 99.80 100 100
(0.84) (5.36) (1.40)
#4:033 #4:3.5 #4:0.2
6 100 99.40 100 97.70 100 929
(2.37) (4.66) (3.0)
#2:0.6 #4:2.3 #2:1
7 100 100 100 100 100 100
Overall average 99.96 98.67 100 99.31 100 99.88

vector corresponding to the i-th signal, n. is the number of classes,
ny is the number of vectors of class k, my is the mean vector of class
k and T denotes the transpose vector. The element y; is equal to one
if x; belongs to class k, and zero otherwise.

The resulting vectors undergo a re-scaling operation by a diag-
onal matrix built from the eigenvalues (4;) of Sy,. This operation can
be written in matrix form as follows:

X = A2UTX (13)

where X is the matrix whose columns are the training vectors X;,
A = diag(4q, 13, ...) is the matrix of variances of the transformed
features (eigenvalues of S,,) and U is the matrix whose columns are
the eigenvectors of Sy,.

Finally, to compress the class information, the resulting vectors
are projected onto the eigenvectors of the between-class covari-
ance matrix Sg, calculated as:

S5 = " (e — m) (my — )’ (14)
k=1

where m is the overall mean vector. The full transformation can be
written as:

X’ =viA—uTX (15)

where V is the matrix whose columns are the eigenvectors of Sg,
calculated from X'.

In the same way that for Gaussian classifier, as the vectors
produced by the DFA of vibration signals are selected to define the
sets of training and testing, and a discussion about the success rate
of Karhunen-Love transformation in identification of each unbal-
ancing level studied is made below in Section 5.4.

5.4. Signal classification

This section shows the results concerning the training and
testing steps performed with the three classifiers. First, we regar-
ded the three main classes of signals: (1) unbalancing by mass
addition at one blade; (2) lack of mass at one blade; and (3)
balanced system. Table 2 present the results from different classi-
fiers using these three classes. For all of these cases and for each
used classifier, 80% (320) of the 400 available vectors processed by

the DFA were selected randomly to define the training set, using the
20% (80) remaining vectors to define the testing stage. The purpose
of the test data is to evaluate the performance of the classifier for
data that were not used during the training, i.e. its generalizability.
Averages were taken over 100 distinct choices of training and
testing sets.

During the signals collection two subsets of signals associated to
the balanced system condition were recorded. One of them was
acquired with three balanced blades and another one without the
blades (shaft only). The purpose was to test the balance of the shaft
as well as that of the whole system. If every part of system (shaft
and blades) is balanced, one can conclude that the vibration levels
of both subsets are similar, and the corresponding signals will have
the same classification.

Table 2 shows clearly that the overall average for the training
process (100%, 98.37% and 99.96%) is higher than for the test pro-
cess (99.79%, 97.68% and 99.83%). This is so because it is easier to
classify a data that was supplied to the classifier during the training
process.

It should be stressed that all vectors associated to a balanced
system were perfectly classified, demonstrating that the three
pattern recognition techniques' output is that the balanced blades
and only shaft both represent a single class. Both neural network
and KLT yielded good results as an overall average precision of over
99% was achieved. The performance of the Gaussian classifier was
only slightly inferior to the other ones, but with the advantage of an
easier implementation. Around 5% of the signals belonging to class
two were misclassified as belonging to class one during testing
stage. The same misclassification occurred during training, but with
an average percentage error of 4.35%. Table 2 shows the classifi-
cation success rate obtained by neural network, Gaussian classifier
and Karhunen-Loeve transformation when classifying those
groups.

It notorious that when the training procedure of the classifiers is
done with only three major work conditions, it is not possible to
distinguish all the different sublevels of wind turbine imbalance.
Therefore, the training and test processes of classifiers were
repeated for seven independent classes. The seven classes are
formed by the following subsets: classes 1 to 3 representing 0.5, 1.0
and 1.5 g added at one blade; classes 4 to 6 representing 0.5, 1.0 and
1.5 g added at two blades; and class 7 representing three balanced
blades plus shaft only. The success rate achieved for the three
classifiers using seven subsets of signals are presented on Table 3.
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From results shown on Table 3, it is possible to determine the de-
gree of confusion between different imbalance levels.

Once more, the overall average for training process (99.96%,
100% and 100%) is higher than for test process (98.67%, 99.31% and
99.88%). Also, the subsets of signals acquired under balanced con-
dition were correctly classified as a single class. By these results,
despite of a blockage ratio of 50.77% and a blockage factor of 0.84, it
is observed that there was no change in vibration measurement
standard and that the classifiers could not distinguish the condition
of three balanced blades from the shaft-only case. A similar
conclusion can be drawn regarding the surface roughness of the
blade and a possible stall of the wind tunnel fan.

By analyzing the errors occurred during the classification shown
in Table 3, it can be seen that the worst misclassification occurred
when 3.9% of vectors belonging to class 4 (two blades with 0.5 g)
were misclassified as belonging to class 5 (two blades with 1.0 g).
Likewise, 3.5% of vectors belonging to class 5 were misclassified as
belonging to class 4. Furthermore, another high misclassification
(2.6%) occurred when vectors from class 3 (one blade with 1.5 g)
were mistakenly classified as from class 6 (two blades with 1.5 g)
and vice-versa (0.6%). It must be pointed out that 1.5 g added
represents 10% of an individual blade weight, therefore a severely
unbalanced state is produced. This, then, is a possible reason for
these mistakes.

In general, KLT showed higher average success rate, followed by
the Gaussian classifier. Despite of this, all classifiers presented good
results, being able to identify imbalance levels with high accuracy.

6. Conclusion

The automatic classification using k-means, an unsupervised
learning algorithm, suggests the existence of four classes. This op-
timum number of classes gives us another idea about how to group
different imbalance levels, which is possibly related to the amount
of mass added to the system. Whatever the case may be, we
concluded it is possible to classify different imbalance levels. With
the combination of Detrended Fluctuation Analysis and pattern
recognition techniques, it is possible to predict the best moment to
carry out maintenance services, reducing costs and maintenance
time.

K-means, which is an unsupervised technique, held a classifi-
cation where classes with similar levels of vibration have been
joined together to form 4 groups. However, as some groups are
composed by more than one class, this classification does not allow
an accurate diagnosis about the present defects.

The classifiers implemented by neural networks, Gaussian
classifier and Karhunen-Loeve transform were very efficient to
classify vibration signals according to different imbalance levels in
a scaled wind turbine.

The best accuracy rates for three imbalance levels were obtained
using the Neural network (with 100% and 99.79% of success for
training and testing, respectively), followed by the Karhunen-Loéve
classifier (with 99.96% and 99.83%) and the Gaussian classifier
(with 98.37% and 97.68%). For seven unbalancing levels, the best
results were obtained using the Karhunen-Loeve classifier (with
100% and 99.88% of success for training and testing, respectively),
followed by the Gaussian classifier (with 100% and 99.31%) and the
Neural network (with 99.96% and 98.67%). Above all, the balanced
condition was well classified for all methods applied, both unsu-
pervised and supervised, with 100% precision. It is important to
point out that the performances of all classifiers are similar and the
standard deviations calculated over one hundred sets of training
and testing vectors were never superior to 5% in any of the exper-
iments. These results show the capability of classifiers to identify
the imbalance levels of new data.

Based on the presented results, we can conclude that the Kar-
hunen-Loeve classifier has the highest accuracy, being able to
accurately distinguish all induced imbalances. Thus, this method
showed to be the most appropriate tool for use in the maintenance
of wind turbine blades. Despite that KL classifier has been the most
accurate, neural networks and Gaussian classifiers also achieved
excellent results, with averages of hits greater than 97%. With such
precision, these results give important contributions to the devel-
opment of an automatic system for unbalance diagnosis in wind
turbines.
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