Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/64575
Tipo: | Artigo de Periódico |
Título : | A Self-Adaptive Approach for Particle Swarm Optimization Applied to Wind Speed Forecasting |
Título en inglés: | A Self-Adaptive Approach for Particle Swarm Optimization Applied to Wind Speed Forecasting |
Autor : | Bezerra, Erick Costa Leão, Raimundo Alípio de Oliveira Braga, Arthur Plínio de Souza |
Palabras clave : | Renewable energy;Wind speed prediction;Decision-making tool;Computational intelligence |
Fecha de publicación : | 2017 |
Editorial : | Springer Nature Switzerland AG. Part of Springer Nature, https://www.springer.com/journal/40313 |
Citación : | BEZERRA, Erick Costa; LEÃO, Raimundo Alípio de Oliveira; BRAGA, Arthur Plínio de Souza. A self-adaptive approach for particle swarm optimization applied to wind speed forecasting. J Control Autom Electr Syst, v. 28, n.6, p.785–795, September 2017. DOI 10.1007/s40313-017-0339-6. |
Abstract: | Operational research has made meaningful contributions to practical forecasting in organizations. An area of substantial activity has been in nonlinear modeling. Based on Particle Swarm Optimization, we discuss a nonlinear method where a self-adaptive approach, named as Particle Swarm Optimization with aging and weakening factors, was applied to training a Focused Time Delay Neural Network. Three freely available benchmark datasets were used to demonstrate the features of the proposed approach compared to the Backpropagation algorithm, Differential Evolution and the Particle Swarm Optimization method when applied for training the artificial neural network. Even acknowledging that the effort in comparing methods across multiple empirical datasets is certainly substantial, the proposed algorithm was used to produce 30 min, 1, 3 and 6 h ahead predictions of wind speed at one site in Brazil. The use of the proposed algorithm goes further than only training the artificial neural network, but also searching the best number of hidden neurons and number of lags. The results have shown that the modified Particle Swarm Optimization algorithm obtained better results in all predictions horizons, and the use of it has remarkably reduced the training time. |
URI : | http://www.repositorio.ufc.br/handle/riufc/64575 |
ISSN : | Electronic 2195-3899 Print 2195-3880 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DEEL - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2017_art_ecbezerra.pdf | 744,01 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.