Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/64556
Tipo: | Artigo de Periódico |
Título: | Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
Título em inglês: | Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
Autor(es): | Lima, Marcello Anderson Ferreira Batista Carvalho, Paulo Cesar Marques de Braga, Arthur Plínio de Souza Pereira, Renata Imaculada Soares Jucá, Sandro César Silveira Fernández Ramírez, Luis Miguel Leite, Josileudo Rodrigues |
Palavras-chave: | Solar forecast;Solar energy;Artificial neural networks;Radial base function |
Data do documento: | 2019 |
Citação: | LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.288 |
Abstract: | Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%. |
URI: | http://www.repositorio.ufc.br/handle/riufc/64556 |
ISSN: | 2172-038X |
Tipo de Acesso: | Acesso Aberto |
Aparece nas coleções: | DEEL - Artigos publicados em revista científica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2019_art_mafblima.pdf | 1,73 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.