Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/64304
Type: Dissertação
Title: Viscoelasticidade de células em substratos macios
Authors: Moura, Afonso Luiz Dantas
Advisor: Sousa, Jeanlex Soares de
Keywords: Microscopia de força atômica;Microscopia Confocal;Redes de F-actina;Viscoelasticidade;Morfologia celular
Issue Date: 2022
Citation: Moura, A. L. D. Viscoelasticidade de células em substratos macios. 2022. 73 f. Dissertação (Mestrado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2022.
Abstract in Brazilian Portuguese: O estudo de células em substratos macios é importante pois estes imitam as condições naturais de células in vivo, possibilitando análises em células com total controle do seu ambiente. Já se sabe que células reagem à rigidez do substrato que se encontram, mas não existe um consenso sobre o funcionamento de seus mecanismos internos. O objetivo deste trabalho é analisar como fibroblastos (linhagem L929) tem sua biomecânica alterada de acordo com a dureza do substrato onde estão depositados, visando entender como a rigidez do substrato afeta sua morfologia e sua reologia, com a medição de seus parâmetros viscoelásticos por Microscopia de Força Atômica, e pela determinação quantificada de sua morfologia por Microscopia Confocal de Fluorescência. As propriedades mecânicas de células individuais são obtidas nos domínios do tempo e de frequência (entre 1 Hz até 1kHz), e as propriedades morfológicas são obtidas pelo cálculo da dimensão fractal da rede de actina filamentosa presente no esqueleto celular. Os substratos macios são hidrogéis de poliacrilamida cuja dureza pode ser controlada de acordo com a concentração do agente reticular utilizada em sua fabricação (0,01%, 0,1%, e 1%). Os resultados de microscopia de força atômica mostram aumento na rigidez celular correlacionada com o decréscimo da rigidez do substrato, e os parâmetros viscoelásticos revelam que a relaxação celular segue um modelo de dupla lei de potência, na qual observa-se um regime de rápida relaxação viscoelástica em tempos muito curtos (abaixo de dezenas de milissegundos), e um regime de relaxação lenta em longos tempos de observação (centenas de milissegundos até dezenas de segundos). Os dados de microscopia confocal revelaram um aumento na dimensão fractal das imagens do citoesqueleto de actina com o aumento da dureza do substrato, que pode ser visualmente correlacionado com o crescimento de longas fibras de actina pelo corpo celular.
Abstract: The study of cells on soft substrates is relevant because they mimic the natural conditions of \textit{in vivo} cells, allowing analyzes in cells with full control of their environment. It is already known that cells react to the stiffness of their underlying substrate, but there is no consensus on the functioning of their internal mechanisms. The objective of this work is to analyze how fibroblasts (lineage L929) have their biomechanics altered according to the stiffness of the substrate they are in, in order to understand how the stiffness of the substrate affects internal mechanisms of viscoelastic relaxation and its morphology, with the measurement of its viscoelastic parameters by Atomic Force Microscopy, and by the quantified determination of their morphology by Confocal Fluorescence Microscopy. The mechanical properties of individual cells are obtained in the time and frequency domains (between 1 Hz to 1 kHz), and the morphological properties are obtained by calculating the fractal dimension of the filamentous actin network present in the cell skeleton. Soft substrates are polyacrylamide hydrogels whose stiffness can be controlled according to the concentration of the crosslinking agent used in their fabrication (0.01%, 0.1%, and 1+%). Atomic force microscopy results show an increase in cellular stiffness correlated with a decrease in substrate stiffness, and the viscoelastic parameters reveal that the cellular relaxation follows a double power law model, in which a regime of rapid viscoelastic relaxation is observed in very short times (below tens of milliseconds), and a slow relaxation regime in long observation times (hundreds of milliseconds to tens of seconds). Confocal microscopy data revealed an increase in the fractal dimension of the cytoskeleton images with increasing substrate stiffness, which could be visually correlated with the growth of long actin fibers through the cell body.
URI: http://www.repositorio.ufc.br/handle/riufc/64304
Appears in Collections:DFI - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2022_dis_aldmoura.pdf10,94 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.