Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/64203
Tipo: | Artigo de Periódico |
Título : | Previsão sazonal de vazões para a Bacia do Orós (Ceará, Brasil) utilizando redes neurais e a técnica de reamostragem dos K-vizinhos |
Título en inglés: | Seasonal flow forecast for the Orós Dam (Ceará, Brazil) using neural networks and the resampling technique of K-neighbors |
Autor : | Araújo, Carla Beatriz Costa de Souza Filho, Francisco de Assis de Araújo Júnior, Luiz Martins de Silveira, Cleiton da Silva |
Palabras clave : | Modelos;Previsão de vazões;Açude Orós |
Fecha de publicación : | 2020 |
Editorial : | Revista Brasileira de Meteorologia |
Citación : | ARAÚJO, Carla Beatriz Costa de at al. Previsão sazonal de vazões para a Bacia do Orós (Ceará, Brasil) utilizando redes neurais e a técnica de reamostragem dos K-vizinhos. Revista Brasileira de Meteorologia, Fortaleza, v. 35, n. 2, p. 197-207, 2020. |
Resumen en portugués brasileño: | Este trabalho tem por objetivo realizar um comparativo de previsão de vazões para a bacia do Orós (Ceará, Brasil) utilizando redes neurais artificiais (RNA) e a técnica de reamostragem dos k-vizinhos. Os modelos foram desenvolvidos a partir da série histórica de 100 anos de dados hidrometeorológicos (temperatura da superfície do mar e vazões). Ambos utilizam como preditores climáticos as temperaturas dos oceanos Atlântico Norte, Atlântico Sul e Pacífico Equatorial e realizam a previsão em julho do regime de vazões do período chuvoso do ano seguinte (janeiro a junho). O modelo kvizinhos foi elaborado a partir da identificação dos anos vizinhos mais próximos para reamostragem da aproximação, já o modelo de RNA foi formulado a partir dos pesos sinápticos e bias obtidos na etapa de treinamento da rede. Os modelos foram comparados considerando as previsões de vazões para a etapa de teste, utilizou-se como parâmetros comparativos: o coeficiente de eficiência Nash-Suttcliffe (E), o coeficiente de determinação (R2), o diagrama de Taylor (2001) e a razão de máxima verossimilhança. Para todas as variáveis comparativas o modelo neuronal apresentou melhores valores, indicando que este representa de forma mais eficiente o comportamento das vazões para o reservatório. |
Abstract: | The objective of this work is to perform a comparative flow forecast for the Orós basin (Ceará, Brazil) using artificial neural networks (RNA) and k-neighbors re-sampling technique. The models were developed from the historical series of 100 years of hydrometeorological data (sea surface temperature and flows). Both use as predictors the temperatures of the North Atlantic, South Atlantic and Equatorial Pacific oceans, and forecast July in the next year’s rainy season (January to June). The k-neighbors model was elaborated from the identification of the closest neighbor years for the resampling of the approximation, since the RNA model was formulated from the synaptic and bias weights obtained in the training phase of the network. The Nash-Suttcliffe (E) efficiency coefficient, the coefficient of determination (R2), the Taylor diagram (2001) and the coefficient of determination (R2) were used for the validation step. maximum likelihood ratio. For all comparative variables, the neural model presented better values, indicating that this represents more efficiently the behavior of the flows to the reservoir. |
URI : | http://www.repositorio.ufc.br/handle/riufc/64203 |
ISSN : | 1982-4351 |
Derechos de acceso: | Acesso Aberto |
Aparece en las colecciones: | DGL - Artigos publicados em revista científica |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2020_art_cbcaraujo.pdf | 435,45 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.