Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/63680
Tipo: Artigo de Evento
Título: Pothole and patch detection on asphalt pavement using deep convolutional neural network
Título em inglês: Pothole and patch detection on asphalt pavement using deep convolutional neural network
Autor(es): Espíndola, Aline Calheiros
Freitas, Gabriel Tavares de Melo
Nobre Júnior, Ernesto Ferreira
Data do documento: 2021
Instituição/Editor/Publicador: https://cilamce.com.br/anais/index.php?ano=2021
Citação: ESPÍNDOLA, Aline Calheiros; FREITAS, Gabriel Tavares de Melo; NOBRE JÚNIOR, Ernesto Ferreira. Pothole and patch detection on asphalt pavement using deep convolutional neural network. In: JOINT IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING-CILAMCE, XLII.; PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS-PANACM, ABMEC-IACM, III., 9-12nov. 2021., Rio de Janeiro, Brazil. Proceedings[...], Rio de Janeiro, Brazil, 2021.
Abstract: The main obstacles to the widespread use of the PMS are the high financial and time costs for carrying out on-site assessments and the difficulty of processing and analyzing the data to generate the diagnoses of the current condition of the pavement. With technological advancement, some techniques such as computer vision, image processing, and machine learning can automatically extract the information of the pavements' condition. The present study proposes the exclusive use of images from cameras attached to a vehicle, simple collection and reduced cost, and extraction of information on pavement defects using a CNN. The research developed object detection models with YOLO architecture to identify potholes and patches. It was analyzed the metrics impact of the image size (224x224, 320x320, 416x416 pixels) and number of iterations for Yolo version 3 and 4. As expected, the increasing image size resulted in improved metrics results and the expansion of the iterations led to an improvement in the IoU. The CNN that presented the best overall performance, combining all the metrics, was based on Yolov3, with an image size of 416x416 and 6000 iterations training, in which it obtained an F1-score of 79.00%, an average IoU of 64.59%, and mAP@0.50 of 73.85%.
URI: http://www.repositorio.ufc.br/handle/riufc/63680
ISSN: 2675-6269
Aparece nas coleções:DET - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_eve_acespindola1.pdf543,83 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.