Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/63680
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorEspíndola, Aline Calheiros-
dc.contributor.authorFreitas, Gabriel Tavares de Melo-
dc.contributor.authorNobre Júnior, Ernesto Ferreira-
dc.date.accessioned2022-01-25T17:37:16Z-
dc.date.available2022-01-25T17:37:16Z-
dc.date.issued2021-
dc.identifier.citationESPÍNDOLA, Aline Calheiros; FREITAS, Gabriel Tavares de Melo; NOBRE JÚNIOR, Ernesto Ferreira. Pothole and patch detection on asphalt pavement using deep convolutional neural network. In: JOINT IBERO-LATIN-AMERICAN CONGRESS ON COMPUTATIONAL METHODS IN ENGINEERING-CILAMCE, XLII.; PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS-PANACM, ABMEC-IACM, III., 9-12nov. 2021., Rio de Janeiro, Brazil. Proceedings[...], Rio de Janeiro, Brazil, 2021.pt_BR
dc.identifier.issn2675-6269-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/63680-
dc.description.abstractThe main obstacles to the widespread use of the PMS are the high financial and time costs for carrying out on-site assessments and the difficulty of processing and analyzing the data to generate the diagnoses of the current condition of the pavement. With technological advancement, some techniques such as computer vision, image processing, and machine learning can automatically extract the information of the pavements' condition. The present study proposes the exclusive use of images from cameras attached to a vehicle, simple collection and reduced cost, and extraction of information on pavement defects using a CNN. The research developed object detection models with YOLO architecture to identify potholes and patches. It was analyzed the metrics impact of the image size (224x224, 320x320, 416x416 pixels) and number of iterations for Yolo version 3 and 4. As expected, the increasing image size resulted in improved metrics results and the expansion of the iterations led to an improvement in the IoU. The CNN that presented the best overall performance, combining all the metrics, was based on Yolov3, with an image size of 416x416 and 6000 iterations training, in which it obtained an F1-score of 79.00%, an average IoU of 64.59%, and mAP@0.50 of 73.85%.pt_BR
dc.language.isopt_BRpt_BR
dc.publisherhttps://cilamce.com.br/anais/index.php?ano=2021pt_BR
dc.titlePothole and patch detection on asphalt pavement using deep convolutional neural networkpt_BR
dc.typeArtigo de Eventopt_BR
dc.title.enPothole and patch detection on asphalt pavement using deep convolutional neural networkpt_BR
Aparece nas coleções:DET - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2021_eve_acespindola1.pdf543,83 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.