Please use this identifier to cite or link to this item:
http://repositorio.ufc.br/handle/riufc/62907
Type: | Artigo de Periódico |
Title: | Biochemical Characterization of Heat-Tolerant Recombinant lArabinose Isomerase from Enterococcus faecium DBFIQ E36 Strain with Feasible Applications in d-Tagatose Production |
Authors: | Manzo, Ricardo Martín Antunes, André Saraiva Leão Marcelo Mendes, Jocélia de Sousa Hissa, Denise Cavalcante Gonҫalves, Luciana Rocha Barros Mammarella, Enrique José |
Keywords: | l-Arabinose isomerase;d-Tagatose;Enterococcus faecium;Virulence gene analysis;d-Galactose |
Issue Date: | 2019 |
Publisher: | Molecular Biotechnology |
Citation: | MANZO, Ricardo Martín et al. Biochemical Characterization of Heat-Tolerant Recombinant lArabinose Isomerase from Enterococcus faecium DBFIQ E36 Strain with Feasible Applications in d-Tagatose Production. Molecular Biotechnology, [s. l.], v. 61, n. 6, p. 385-399, 2019. |
Abstract: | d-Tagatose is a ketohexose, which presents unique properties as a low-calorie functional sweetener possessing a sweet flavor profile similar to d-sucrose and having no aftertaste. Considered a generally recognized as safe (GRAS) substance by FAO/ WHO, d-tagatose can be used as an intermediate for the synthesis of other optically active compounds as well as an additive in detergent, cosmetic, and pharmaceutical formulations. This study reports important features for l-arabinose isomerase (EC 5.3.1.4) (L-AI) use in industry. We describe arabinose (araA) gene virulence analysis, gene isolation, sequencing, cloning, and heterologous overexpression of L-AI from the food-grade GRAS bacterium Enterococcus faecium DBFIQ E36 in Escherichia coli and assess biochemical properties of this recombinant enzyme. Recombinant L-AI (rL-AI) was one-step purified to homogeneity by Ni2+-agarose resin affinity chromatography and biochemical characterization revealed low identity with both thermophilic and mesophilic L-AIs but high degree of conservation in residues involved in substrate recognition. Optimal conditions for rL-AI activity were 50 °C, pH 5.5, and 0.3 mM Mn2+, exhibiting a low cofactor concentration requirement and an acidic optimum pH. Half-life at 45 °C and 50 °C were 1427 h and 11 h, respectively, and 21.5 h and 39.5 h at pH 4.5 and 5.6, respectively, showing the high stability of the enzyme in the presence of a metallic cofactor. Bioconversion yield for d-tagatose biosynthesis was 45% at 50 °C after 48 h. These properties highlight the technological potential of E. faecium rL-AI as biocatalyst for d-tagatose production |
URI: | http://www.repositorio.ufc.br/handle/riufc/62907 |
Access Rights: | Acesso Aberto |
Appears in Collections: | DBIO - Artigos publicados em revista científica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019_art_rmmanzo.pdf | 5,06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.