Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/61497
Type: Dissertação
Title: Adição de vanádio ao catalisador de níquel disperso em sílica aplicado na reação de reforma a seco do metano
Title in English: Vanadium addition to the silica-dispersed nickel catalyst applied in the dry reforming reaction of methane
Authors: Neves, Luanna Soares
Advisor: Valentini, Antoninho
Keywords: Reforma do metano;Dióxido de carbono;Vanádio;Catalisador
Issue Date: 2014
Citation: NEVES, Luanna Soares. Adição de vanádio ao catalisador de níquel disperso em sílica aplicado na reação de reforma a seco do metano. 2014. 67 f. Dissertação (Mestrado em Química) - Universidade Federal do Ceará, Fortaleza, 2014.
Abstract in Brazilian Portuguese: A reação de reforma a seco do metano é empregada como uma alternativa para o aproveitamento dos gases metano (CH4) e dióxido de carbono (CO2) com o intuito de reduzir o impacto ambiental ocasionado por suas emissões e por ser economicamente viável por produzir o gás de síntese. A desvantagem desta reação é a formação de carbono (coque) na superfície do catalisador ocasionando sua desativação. Com o intuito de averiguar as propriedades do coque bem como obter altas conversões de CH4 e CO2 resolveu-se estudar o efeito da adição de vanádio (V) ao catalisador de níquel depositado em sílica (NiSi), na reação de reforma a seco do metano, variando a temperatura (600ºC, 700ºC e 800ºC) e composição reacional (CH4/CO2= 0,5, 1 e 2). Os catalisadores (NiSi e NiVSi) foram sintetizados pelo método dos precursores poliméricos e caracterizados pelas técnicas de espectroscopia de emissão óptica com plasma acoplado indutivamente (ICP-OES), isotermas de adsorção/dessorção de N2, difração de raios-X (DRX) e redução a temperatura programada (TPR). As amostras de catalisadores pós-teste catalítico foram caracterizadas pela técnica de oxidação a temperatura programada (TPO), termogravimetria (TG), espectroscopia Raman e microscopia eletrônica de varredura (MEV). O catalisador contendo coque foi submetido a tratamento com ácido fluorídrico e ácido clorídrico e analisado por DRX e TG. A análise das isotermas de adsorção e dessorção de N2 mostraram que ambos os catalisadores são majoritariamente mesoporosos com elevada área superficial e volume total de poros. A adição de vanádio afeta o processo de sinterização do óxido de níquel (DRX), assim como promove deslocamento da redução do NiO para temperaturas mais elevadas. O que pode estar associado a formação da fase Ni3V2O8. Os testes catalíticos sugerem que o catalisador NiVSi apresenta maiores conversões de CH4 e CO2 do que o NiSi, exceto para a condição de 800ºC e razão CH4/CO2 igual a 1,0. A análise de TPO aponta para a formação de nanotubos carbono de parede múltipla. A melhor condição para a geração de gás de síntese foi observada para o catalisador NiVSi na condição de 800°C e razão CH4/CO2 igual a 1,0. No entanto, se o interesse for a produção de nanotubos de carbono, o catalisador NiVSi apresenta as melhores condições a 800°C e razão CH4/CO2 igual a 2,0. Em tal condição a razão H2/CO foi de 1,2, com alta deposição de coque (42%) e nanotubos de carbono com menor razão ID/IG obtido via espectroscopia Raman. A etapa de purificação foi realizada com êxito obtendo nanotubos de carbono com resíduo de catalisador abaixo de 1% pela análise de TG.
Abstract: Methane dry reforming can be used as an alternative to methane and carbon dioxide mitigation. This process can reduce the environmental impact and is economically viable since it produces syngas. The drawback of this reaction is the carbon deposition (coke) on the catalyst surface, causing the deactivation process. To investigate the properties of coke and get high conversions of CH4 and CO2, it was studying the effect of addition of vanadium (V) to the catalyst NiSi in methane dry reforming reaction, varying the temperature (600°C, 700°C and 800°C) and reactive composition (CH4/CO2= 0.5, 1 and 2). The catalysts (NiSi and NiVSi) were synthesized by the polymeric precursor method and characterized by optical emission spectroscopy with inductively coupled plasma (ICP-OES), N2 adsorption/desorption isotherms, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The post-test catalysts characterization was done by temperature-programmed oxidation (TPO), thermogravimetric analysis (TG), Raman spectroscopy and scanning electron microscopy (SEM). After the catalytic test, the coked catalyst underwent acid treatment with hydrofluoric acid and acid chloride and was analyzed by XDR and TG. The N2 adsorption/desorption analysis showed that both catalysts are mesoporous with high surface area and pore volume. By XRD, it was observed that the addition of vanadium affects the sintering process of the nickel oxide and, the TPR shows the NiO reduction band shifting to a higher temperature. Such observations may be due to the formation of the Ni3V2O8 phase. The catalytic tests indicate that NiVSi catalyst exhibits higher conversions of CH4 and CO2 compared to NiSi, except for the condition of 800°C and CH4/CO2 ratio of 1.0. TPO analysis suggests the formation of multi-wall carbon nanotubes. The best experimental condition for the synthesis gas generation is the catalyst NiVSi provided 800°C and CH4/CO2 ratio equal to 1.0. However, for carbon nanotubes production, the catalyst NiVSi provides the best conditions at 800°C and CH4/CO2 ratio of 2.0. In such conditions, the H2/CO ratio was 1.2, with high coking (42%) and carbon nanotubes with smaller ratio ID/IG obtained via Raman spectroscopy.
URI: http://www.repositorio.ufc.br/handle/riufc/61497
Appears in Collections:DQAFQ - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2014_dis_lsneves.pdf4,03 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.